
Finite Element Methods

Based on Least-Squares and Modified Variational

Principles

Pavel Bochev1

University of Texas at Arlington
Department of mathematics

bochev@uta.edu

April 14, 2004

1This work is partially supported by Com2MaC-KOSEF and the National Sci-
ence Foundation under grant number DMS-0073698.



ii



Contents

Preface viii

Acknowledgments viii

1 Introduction 1
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Review of variational principles 7
2.1 Unconstrained energy minimization . . . . . . . . . . . . . . . 7
2.2 Saddle-point optimization problems . . . . . . . . . . . . . . . 10
2.3 Galerkin methods . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Modified variational principles 21
3.1 Modification of constrained problems . . . . . . . . . . . . . 22

3.1.1 The penalty method . . . . . . . . . . . . . . . . . . . 24
3.1.2 Penalized and Augmented Lagrangian formulations . . 25
3.1.3 Consistent stabilization . . . . . . . . . . . . . . . . . 26

3.2 Problems without optimization principles . . . . . . . . . . . 30
3.2.1 Artificial diffusion and SUPG . . . . . . . . . . . . . . 31

3.3 Modified variational principles: concluding remarks . . . . . . 32

4 Least-squares methods: first examples 33
4.1 Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 PDE’s without optimization principles . . . . . . . . . . . . . 36
4.4 A critical look . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.1 Some questions and answers . . . . . . . . . . . . . . . 41

iii



iv

5 CLSP and DLSP 43
5.1 The abstract problem . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Continuous least-squares principles . . . . . . . . . . . . . . . 47
5.3 Discrete least-squares principles . . . . . . . . . . . . . . . . . 50

6 ADN systems 55
6.1 ADN differential operators . . . . . . . . . . . . . . . . . . . . 56
6.2 CLSP for ADN operators . . . . . . . . . . . . . . . . . . . . 60
6.3 First-order ADN systems . . . . . . . . . . . . . . . . . . . . 62
6.4 CLSP for first order systems . . . . . . . . . . . . . . . . . . . 64
6.5 DLSP for first-order systems . . . . . . . . . . . . . . . . . . 66

6.5.1 Least-squares for Petrovski systems . . . . . . . . . . . 66
6.5.2 Least-squares for first-order ADN systems . . . . . . . 69

6.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 78

7 Least-squares for incompressible flows 81
7.1 First-order equations . . . . . . . . . . . . . . . . . . . . . . . 82

7.1.1 The velocity-vorticity-pressure equations . . . . . . . . 82
7.1.2 The velocity-pressure-stress equations . . . . . . . . . 87
7.1.3 Velocity gradient-based transformations . . . . . . . . 90
7.1.4 First-order formulations: concluding remarks . . . . . 93

7.2 Inhomogeneous boundary conditions . . . . . . . . . . . . . . 94
7.3 Least-squares methods . . . . . . . . . . . . . . . . . . . . . . 95

7.3.1 Non-equivalent least-squares . . . . . . . . . . . . . . . 97
7.3.2 Weighted least-squares methods . . . . . . . . . . . . . 99
7.3.3 H−1 least-squares methods . . . . . . . . . . . . . . . 102

7.4 Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . 103

8 Least squares for −4u = f 107
8.1 First-order systems . . . . . . . . . . . . . . . . . . . . . . . . 108

8.1.1 Inhomogeneous boundary conditions . . . . . . . . . . 109
8.2 Continuous Least Squares Principles . . . . . . . . . . . . . . 109

8.2.1 Error estimates . . . . . . . . . . . . . . . . . . . . . . 110
8.2.2 Conditioning and preconditioning of discrete systems . 111

9 Least-squares methods that stand apart 113
9.1 Least-squares collocation methods . . . . . . . . . . . . . . . 113
9.2 Restricted least-squares methods . . . . . . . . . . . . . . . . 115
9.3 Least-squares optimization methods . . . . . . . . . . . . . . 116



v

A The Complementing Condition 119
A.1 Velocity-Vorticity-Pressure Equations . . . . . . . . . . . . . 120
A.2 Velocity-Pressure-Stress Equations . . . . . . . . . . . . . . . 124



vi



List of Tables

3.1 Comparison of different settings for finite element methods in
their most general sphere of applicability. . . . . . . . . . . . 22

7.1 Classification of boundary conditions for the Stokes and Navier-
Stokes equations: velocity-vorticity-pressure formulation. . . . 88

7.2 Rates of convergence with and without the weights. Velocity-
vorticity-pressure formulation with (7.4) and (7.17). . . . . . 100

7.3 Convergence rates with and without the weights. Velocity-
pressure-stress formulation. . . . . . . . . . . . . . . . . . . . 101

vii



viii

Preface

These lecture notes contain an expanded version of the short course Finite
element methods based on least-squares and modified variational principles
presented at POSTECH on July 5-6, 2001. While this topic is broad enough
to include such diverse methods as mixed Galerkin finite elements (where a
quadratic positive functional is modified via Lagrange multipliers) to bona-
fide least-squares finite elements, we have tried to keep the focus of the
presentation on methods which involve, explicitly, or implicitly, application
of least-squares principles. Our choice is largely motivated by the recent
popularity of such finite element methods and the ever increasing number
of practical applications where they have become a viable alternative to the
more conventional Galerkin methods.

Space and time limitations have necessarily led to some restrictions on
the range of topics covered in the lectures. Besides personal preferences
and tastes, which are responsible for the definite “least-squares” bias of
these notes, the material selection was also shaped by the existing level
of mathematical maturity of the methods. As a result, the bulk of the
notes is devoted to the development of least-squares methods for first-order
ADN elliptic systems with particular emphasis on the Stokes equations.
This choice allows us to draw upon the powerful elliptic regularity theory of
Agmon, Douglis and Nirenberg [11] in the analysis of least-squares principles.
At the same time, it is general enough so as to expose universal principles
occuring in the design of least-squares methods.

For the reader who decides to pursue the subject beyond these notes we
recommend the review article [59] and the book [6]. A good summary of early
developments, especially in the engineering field can be found in [119]. Least-
squares methods for hyperbolic problems and conservation laws remain much
less developed which is the reason why we have not included this topic here.
The reader interested in such problems is referred to the existing literature,
namely [94], [95], [96], [97], [118], and [117] for applications to the Euler
equations and hyperbolic systems; [113], [114] for studies of least-squares
for scalar hyperbolic problems; and [115] and [116] for convection-diffusion
problems.
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Chapter 1

Introduction

Importance of variational principles in finite element methods stems from
the fact that a finite element method is first and foremost a quasi-projection
scheme. The paradigm that describes and defines quasi-projections is a
synthesis of two components: a variational principle and a closed subspace.
And indeed, a finite element method is completely determined by specifying
the variational principle (usually given in terms of a weak equation derived
from the PDE) and the closed, in fact, finite dimensional subspace. The
approximate solutions are then characterized as

quasi-projections of the exact weak solutions onto the closed sub-
space.

From mathematical viewpoint, the success of this scheme stems from the in-
trinsic link between variational principles and partial differential equations.
From a practical viewpoint, the great appeal of finite element methods (and
their wide acceptance in the engineering community) is rooted in the choice
of approximating spaces spanned by locally supported, piecewise polynomial
functions defined on simple geometrical shapes. The combination of these
two ingredients has spawned a truly remarkable class of numerical methods
which is unsurpassed in terms of its mathematical maturity and practical
utility.

While both the choice of the finite element space and the variational
principle play critical role in the finite element method, it is the variational
principle that determines the fundamental properties of finite elements, both
the favorable ones and the negative ones. Let us recall that there are three
different kinds of variational principles that lead to three fundamentally
different types of quasi-projections and finite element methods. The first

1



2

one stems from unconstrained minimization of a positive, convex functional
in a Hilbert space and seeks a global minimum point. The second variational
principle seeks an equilibrium point, while the third one is not related to
optimization problems at all. In Chapter 2 we will consider examples of
finite element methods defined in each one of these three variational settings.

Global minimization of convex functionals, i.e., the first variational set-
ting, offers by far the most favorable environment for a finite element method.
In this case the finite element solution is characterized as a true projec-
tion with respect to a problem dependent inner product in some Hilbert
space, i.,e., the finite element method is essentially a variant of the classical
Rayleigh-Ritz projection with a specific (piecewise polynomial!) choice of
the closed subspace. For instance, in linear elasticity, which is among the
first successful applications of finite elements, the state u of an elastic body
under given body force f , surface displacement g and surface traction t is
characterized as one having the minimum potential energy1

E =
1
2

∫
Ω
σ(u) : ε(u)dx−

∫
Ω

f · udx+
∫

ΓT

t · udS.

This connection was not immediately recognized as the principal reason
behind the success of the method and some early attempts to extend finite
elements beyond problems whose solutions can be characterized as global
minimizers encountered serious difficulties.

To understand the cause for these difficulties it suffices to note that
mathematical and computational properties of inner product projections on
one hand and saddle-point or formal Galerkin principles, on the other hand
are strikingly different. Numerical approximation of saddle points, which is
the defining paradigm of mixed Galerkin methods, requires strict adherence
of the discrete space to restrictive compatibility conditions. Orthogonaliza-
tion of residuals in the formal Galerkin method can lead to occurrence of
spurious oscillations. In both cases we are confronted with the task of solv-
ing much less structured algebraic problems than those arising from inner
product projections.

Combination of all these factors makes saddle-point and formal Galerkin
quasi-projections much more sensitive to variational crimes. Nevertheless,
the fact that such difficulties exists does not by any means diminish the
overall appeal of the finite element method. It is merely an attestation to
the fact that problems without natural energy principles are much harder

1Here σ(u) = 2µε(u) + λtr(ε(u))I is the stress, ε(u) = 1
2
(∇u+ (∇u)T ) is the strain, u

is the displacement and λ and µ are the Lame moduli.
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to solve to begin with. In fact, any discretization method that works well
for problems with energy principles will inevitably experience similar com-
plications for problems without such principles. However, within the finite
element paradigm we can approach these problems in a very systematic and
consistent manner by focusing on the variational principle as the main cul-
prit, while in other methods one is confined to a set of remedies defined in
an ad hoc manner.

More precisely, the key role of the quasi-projection in the finite element
method naturally points towards the exploration of

alternative, externally defined variational principles

in lieu of the naturally occurring quasi-projections2. This brings us to the
two principal and philosophically different approaches that exist today and
whose aim is to obtain better projections (or quasi-projections). The first ap-
proach retains the principal role of the naturally occurring quasi-projection
but modifies it with terms that make it resemble more a true inner prod-
uct projection. Some methods that belong to this category are Galerkin-
Least-Squares [33]; stabilized Galerkin [26], [34], [32]; the SUPG class of
methods [39], [40], [41], [42], [24], [30] and [31]; augmented Lagrangian [21],
and penalty [20], [23], [38] formulations, among others. Chapter 3 offers
a sampling of several popular finite element methods that belong to these
categories.

In contrast, the second approach abandons completely the natural quasi-
projection and proceeds to define an artificial, externally defined energy-
type principle for the PDE. Typically, the “energy” principle is defined by
virtue of residual minimization in some Hilbert spaces, thus the terms “least-
squares principles” and “least squares finite elements” are used to describe
the ensuing variational equations and finite element methods. In Chapter 4
we take a first look at these methods which will remain in the focus of all
subsequent chapters.

Residual minimization is as universal as the residual orthogonalization
of Galerkin methods. Thus, it is applicable to virtually any PDE. How-
ever, residual minimization differs fundamentally from formal residual or-
thogonalization in having the potential to recover the attractive features of
Rayleigh-Ritz principles. For the same reason least-squares residual mini-
mization differs from methods based on modified variational principles be-

2Another possibility is to modify the finite element spaces by “enriching” them with,
e.g., bubble functions. This enrichment is related, and in many cases equivalent, to mod-
ification of the variational principle; see e.g., [27], [36] and [35]. Thus, we do not pursue
this topic here.
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cause such methods are not capable of recovering all of the advantages of
the Rayleigh-Ritz setting.

Finite element methods based on least-squares variational principles have
been the subject of extensive research efforts over the last two decades.
While these efforts have paid off in turning least-squares into a viable alter-
native to standard and modified Galerkin methods, formulation of a good
least-squares method requires careful analysis. Since such methods are based
on inner product projections they tend to be exceptionally robust and sta-
ble. As a result, one is often tempted to forego analyses and proceed with
the seemingly most natural least-squares formulation. As we shall see such
“shortcuts” do not necessarily lead to methods that can fully exploit the
advantages of least-squares principles.

Among the factors responsible for this renaissance of least-squares after
a somewhat disappointing start in the early seventies3 a key role was played
by the idea of transformations to equivalent first-order systems. This helped
to circumvent the need to work with impractical C1 finite element spaces
and led to a widespread use of least-squares in fluid flow computations; see
[48]–[58], [98]–[101], [108]–[111] and [104], among others. From the math-
ematical standpoint another idea, namely the notion of norm-equivalence
of least-squares functionals emerged as a universal prerequisite for recov-
ering fully the Rayleigh-Ritz setting. However, it was soon realized that
norm-equivalence is often in conflict with practicality, even for first-order
systems (see [48], [56] and [58]); and because practicality is usually the rigid
constraint in the algorithmic development, norm equivalence was often sac-
rificed.

This brings us to the main theme of these notes which is to establish
the reconciliation between practicality, as driven by algorithmic develop-
ment, and norm-equivalence, as motivated by mathematical analyses, as the
defining paradigm of least-squares finite element methods. The key com-
ponents of this paradigm are introduced in Chapter 5 and include a con-
tinuous least-squares principle (CLSP) which describes a mathematically
well-posed, but perhaps impractical, variational setting, and an associated
discrete least-squares principle (DLSP) which describes an algorithmically
feasible setting. The association between a CLSP and a DLSP follows four

3Early examples of least-squares methods suffered from serious disadvantages that seri-
ously limited their appeal. For instance, such methods often demanded higher (compared
with Galerkin methods) solution regularity to establish convergence. Similarly, in many
cases discretization required impractical C1 or better finite element spaces and led to
algebraic problems with higher than usual condition numbers; see e.g.,[46], [60]–[61]. Fur-
thermore, in most cases it wasn’t clear how to precondition these problems efficiently.
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universal patterns which lead to four classes of least-squares finite elements
with distinctly different properties.

In Chapter 6 we develop this paradigm for the important class of first-
order systems that are elliptic in the sense of Agmon-Douglis-Nirenberg [11].
In particular, we show that degradation of fundamental properties of least-
squares method such as condition numbers, asymptotic convergence rates,
and existence of spectrally equivalent preconditioners occurs when DLSP
deviates from the mathematical setting induced by a given CLSP.

Then, in Chapters 7–8 the least-squares approach is further specialized to
the Stokes equations and the Poisson problem, respectively. The discussion
is rounded up in Chapter 9 with a brief summary of least-squares methods
that do not fit into the mold of Chapter 6.

For the convenience of the reader we have decided to include some of the
details that accompany the application of ADN theory for the development
of the methods in Chapter 6. Most of this material is collected in Appendix
A where the Complementing Condition of [11] is verified for two first-order
forms of the Stokes equations.

1.1 Notation

Throughout these notes we try to adhere to standard notations and symbols.
Ω will denote an open bounded domain in Rn, n = 2 or 3, having a suffi-
ciently smooth boundary Γ. Throughout, vectors will be denoted by bold
face letters, e.g., u, tensors by underlined bold faced capitals, e.g., T, and
C will denote a generic positive constant whose meaning and value changes
with context. For s ≥ 0, we use the standard notation and definition for
the Sobolev spaces Hs(Ω) and Hs(Γ) with corresponding inner products
denoted by (·, ·)s,Ω and (·, ·)s,Γ and norms by ‖·‖s,Ω and ‖·‖s,Γ, respectively.
Whenever there is no chance for ambiguity, the measures Ω and Γ will be
omitted from inner product and norm designations. We will simply denote
the L2(Ω) and L2(Γ) inner products by (·, ·) and (·, ·)Γ, respectively. We
recall the space H1

0 (Ω) consisting of all H1(Ω) functions that vanish on the
boundary and the space L2

0(Ω) consisting of all square integrable functions
with zero mean with respect to Ω. Also, for negative values of s, we recall
the dual spaces Hs(Ω).

By (·, ·)X and ‖·‖X we denote inner products and norms, respectively, on
the product spaces X = Hs1(Ω)× · · · ×Hsn(Ω); whenever all the indices si
are equal we shall denote the resulting space by [Hs1(Ω)]n or by Hs(Ω) and
simply write (·, ·)s,Ω and ‖·‖s,Ω for the inner product and norm, respectively.
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Due to the limited space we do not quote a number of relevant results
concerning Sobolev spaces and finite element approximation theory, instead
we refer the reader to the monographs [1], [2], [3] and [4] for more detailed
information on these subjects.



Chapter 2

Review of variational
principles

In this chapter we present three well-known examples of finite element meth-
ods. Each example highlights one of the three naturally occurring variational
principles. The purpose of this review is to expose the key role played by
the different types of quasi-projections for the analytical and computational
properties of the ensuing finite element methods.

2.1 Unconstrained energy minimization

Consider the convex, quadratic functional

J(φ; f) =
1
2

∫
Ω
|∇φ|2 dΩ−

∫
Ω
fφ dΩ (2.1)

and the minimization principle

min
φ∈H1

0 (Ω)
J(φ; f) , (2.2)

where f is a given function and H1
0 (Ω) denotes the space of functions that

have square integrable first derivatives and that vanish on the boundary of
the given domain Ω. Setting the first variation of (2.1) to zero gives the first-
order necessary condition for (2.2). Therefore, we find that the minimizer
φ ∈ H1

0 (Ω) of the functional (2.1) satisfies the variational equation

Qr(φ;ψ) = F (ψ) ∀ψ ∈ H1
0 (Ω) , (2.3)

7
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where

Qr(φ;ψ) =
∫

Ω
∇φ · ∇ψ dΩ and F (ψ) =

∫
Ω
fψ dΩ . (2.4)

To see the connection between the minimization principle (2.2) and par-
tial differential equations, we integrate by parts1 in (2.3) to obtain

0 =
∫

Ω
(∇φ · ∇ψ − fψ) dΩ = −

∫
Ω
ψ(4φ+ f) dΩ . (2.5)

Since ψ is arbitrary, it follows that every sufficiently smooth minimizer of
J(·; f) is a solution of the familiar Poisson problem

−4φ = f in Ω and φ = 0 on Γ . (2.6)

The boundary condition follows from the fact that all admissible states were
required to vanish on Γ.

We note that (2.3) makes sense for functions φ that vanish on Γ and that
have merely square integrable first derivatives. On the other hand, (2.6)
requires φ to have two continuous derivatives. Thus, one appealing feature
of the unconstrained energy minimization formulation is that every classical,
i.e., twice continuously differentiable, solution of the Poisson equation is also
a solution of the minimization problem (2.2) but the latter admits solutions
which are not classical solutions of (2.6). These non-classical solutions of
(2.2) are referred to as weak solutions of the Poisson problem.

The correspondence between minimizers of (2.2) and solutions of (2.6)
is not a rare coincidence. A large number of physical processes is governed
by energy minimization principles similar to the one considered above. The
first-order optimality systems of these principles can be transformed into
differential equations, provided the minimizer is smooth enough.

The analytic and computational advantages of the energy minimization
setting stem from the fact that the expression

J(ψ; 0) =
1
2

∫
Ω
|∇ψ|2dΩ ≡ 1

2
|ψ|21

defines an equivalent norm on the space H1
0 (Ω). As a result, Qr(·; ·) de-

fines an equivalent inner product on H1
0 (Ω). The norm-equivalence of the

functional (2.1) is a direct consequence of the Poincaré inequality

λ‖ψ‖0 ≤ |ψ|1 ∀ψ ∈ H1
0 (Ω) , (2.7)

1Assuming that the minimizer φ of J(·; f) is sufficiently smooth to justify the above
integration.
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where λ is a constant whose value depends only on Ω. The inner product
equivalence

(1 + λ−2)−1‖ψ‖2
1 ≤ Qr(ψ;ψ) and Qr(φ;ψ) ≤ ‖φ‖1‖ψ‖1 , (2.8)

follows from the identity |φ|21 = Qr(φ;φ) and the Cauchy inequality. Thus,
the energy principle (2.2) gives rise to the the equivalent energy norm

|||φ||| ≡ J(φ; 0)1/2

and the equivalent energy inner product

((φ, ψ)) ≡ Qr(φ;ψ) .

Let us now investigate the computational advantages of this setting in
the finite element method. We consider a weak solution φ and its finite
element approximation φh. This approximation is determined by solving
the variational problem

seek φh ∈ Xh such that Qr(φh;ψh) = F (ψh) ∀ψh ∈ Xh , (2.9)

where Xh is a finite dimensional subspace of H1
0 (Ω). Note that (2.9) is

simply (2.3), restricted to Xh.
First, we observe that the conformity2 of Xh and the fact that (2.8) holds

for all functions belonging to H1
0 (Ω) imply that (2.9) defines an orthogonal

projection of φ onto Xh with respect to the inner product ((·, ·)). From the
fact that the exact solution satisfies the discrete problem and (2.9) it follows
that

((φ, ψh)) = F (ψh) ∀ψh ∈ Xh

and
((φh, ψh)) = F (ψh) ∀ψh ∈ Xh

so that
((φ− φh, ψh)) = 0 ∀ψh ∈ Xh .

As a result, φh minimizes the energy norm of the error, i.e.,

|||φ− φh||| = inf
ψh∈Xh

|||φ− ψh|||.

In conjunction with the continuity and coercivity bounds of (2.8) this bound
gives an error estimate in the norm of H1

0 (Ω):

‖φ− φh‖1 ≤ C inf
ψh∈Xh

‖φ− ψh‖1 .

2In the sense that the inclusion Xh ⊂ H1
0 (Ω) holds for all h
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Second, we observe that the norm-equivalence of the energy functional
also implies stability in the norm of H1

0 (Ω). This follows from the coercivity
bound in (2.8) which shows that the energy norm controls the gradient of
the weak solution.

Lastly, let us examine the linear algebraic system that corresponds to
the weak equation (2.9). Given a basis {φi}Ni=1 of Xh this system has the
form

AΦh = F , (2.10)

where Aij = ((φi, φj)) = Qr(φi;φj), Fi = F (φi), and (Φh)j = cj are the
unknown coefficients of φh. From (2.4) and (2.8) it follows that A is sym-
metric and positive definite matrix. Moreover, the equivalence between the
energy inner product defined by Qr(·; ·) and the standard inner product on
H1

0 (Ω)×H1
0 (Ω) implies spectral equivalence between A and the Gramm ma-

trix of {φi}Ni=1 in H1
0 (Ω)-inner product. This fact is useful for the design of

efficient preconditioners for (2.10).
All attractive features described so far stem from exactly two factors:

characterization of all weak solutions as minimizers of unconstrained energy
functional and the fact that Xh is a subspace of H1

0 (Ω). As a result, the
finite element solution φh is an orthogonal projection of the exact solution
φ onto Xh. Moreover, as long as the inclusion Xh ⊂ H1

0 (Ω) holds,

• the discrete problems will have unique solutions;

• the approximate solutions will minimize an energy functional on the
trial space so that they represent, in this sense, the best possible ap-
proximation;

• the linear systems used to determine the approximate solutions will
have symmetric and positive definite coefficient matrices;

• these matrices will be spectrally equivalent to the Gram matrix of the
trial space basis in the natural norm of H1

0 (Ω).

2.2 Saddle-point optimization problems

We consider a setting in which weak solutions of PDE’s are characterized
via constrained minimization of convex, quadratic functionals. We note that
a constrained optimization problem can be formally recast into an uncon-
strained one by simply restricting the admissible space by the constraint.
The two settings are equivalent and, in theory, finite element methods may
be based on either setting.
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In practice, the choice of settings will depend on the ease with which the
constraint can be imposed on a finite element space. Some constraints are
trivial to impose, while other constraints require complicated construction
of finite element spaces. In such a case one may choose to use Lagrange mul-
tipliers instead. This results in weak problems of the saddle-point type and
finite element methods which lack many of the attractions of the Rayleigh-
Ritz setting.

To illustrate how different constraints affect the choice of variational for-
mulations for the finite element method consider again the weak Poisson
problem (2.6). This variational equation gives the first-order necessary con-
dition for the unconstrained minimization of (2.1). In actuality this problem
is constrained in the sense that all admissible states are required to vanish
on the boundary Γ. However, we avoided dealing explicitly with this con-
straint by minimizing (2.1) over H1

0 (Ω). Of course, now it is necessary to
approximate H1

0 (Ω), but we have avoided Lagrange multipliers3. Moreover,
finite element subspaces of H1

0 (Ω) are not at all hard to find; see, e.g., [3].
Now let us consider the quadratic functional

J(u; f) =
1
2

∫
Ω
|∇u|2 dΩ−

∫
Ω

f · u dΩ (2.11)

and the minimization problem

min
u∈H1(Ω)

J(u; f) subject to ∇ · u = 0 and u|Γ = 0 , (2.12)

where H1(Ω) is the vector analog of H1(Ω). To avoid Lagrange multipliers
this problem can be converted to unconstrained minimization of (2.11) on
the space

Z = {v ∈ H1(Ω) | ∇ · v = 0; u|Γ = 0} ≡ {v ∈ H1
0(Ω) | ∇ · v = 0}

of solenoidal functions belonging to H1
0(Ω). We then pose the unconstrained

minimization problem
min
u∈Z

J(u; f) . (2.13)

The first-order necessary condition for (2.13) is

seek u ∈ Z such that
3There are instances when this approach is useful, especially for inhomogeneous bound-

ary conditions posed on complicated regions; see, e.g., [17].
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Ω
∇u : ∇v dΩ =

∫
Ω

f · v dΩ ∀v ∈ Z . (2.14)

It is easy to see that
∫
Ω∇u : ∇vdΩ is coercive and continuous on Z× Z so

that (2.13) has a unique solution. Therefore, (2.13) provides a Rayleigh-Ritz
setting for (2.12). The problem is that in order to use this setting to define a
finite element method we must construct a conforming subspace of Z. This
is not trivial4 at all, at least compared with satisfying the constraint u = 0
and so we introduce the Lagrange multiplier function p, the Lagrangian
functional

L(u, p; f) = J(u; f)−
∫

Ω
p∇ · u dΩ , (2.15)

and the unconstrained problem of determining saddle points of L(u, p; f).
The first-order necessary conditions for (2.15) are equivalent to the weak
problem:

seek (u, p) in an appropriate function space such that u = 0 on Γ and∫
Ω
∇u : ∇ξ dΩ−

∫
Ω
p∇ · ξ dΩ =

∫
Ω

f · ξ dΩ∫
Ω
µ∇ · u dΩ = 0

(2.16)

for all (ξ, µ) in the corresponding function space.

If solutions to the constrained minimization problem (2.12) or, equiva-
lently, of (2.16), are sufficiently smooth, then, using integration by parts,
one obtains without much difficulty the Stokes equations

−4u +∇p = f and ∇ · u = 0 in Ω ,

u = 0 on Γ ,
(2.17)

where u is the velocity and p is the pressure. Thus, (2.16) is a weak formu-
lation of the Stokes equations. Solutions of (2.17) are determined up to a
hydrostatic pressure mode. This mode can be eliminated by imposing an
additional constraint on the pressure variable. A standard method of doing
this is to require that ∫

Ω
p dx = 0. (2.18)

4It is much easier to construct a non-conforming solenoidal space. One example are
Raviart-Thomas spaces; see [22].
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A second example of a constrained minimization problem is

minJ(u) subject to ∇ · u = f , (2.19)

where the “energy” functional is given by

J(u) =
1
2

∫
Ω
|u|2 dΩ .

In fluid mechanics, (2.19) is known as the Kelvin principle and, in structural
mechanics (where u is a tensor), as the complimentary energy principle. The
constraint in (2.19) defines an affine subspace which makes it even harder to
satisfy! Therefore, we are forced again to consider a Lagrange multiplier p
to enforce the constraint and the Lagrangian functional

L(u, p; f) =
1
2

∫
Ω
|u|2 dΩ−

∫
Ω
p(∇ · u− f) dΩ .

The optimality system obtained by setting the first variations of L(u, p; f)
to zero is given by

seek (u, p) belonging to some appropriate function space such that∫
Ω

u · v dΩ−
∫

Ω
p∇ · v dΩ = 0∫

Ω
q∇ · u dΩ =

∫
Ω
fq dΩ

(2.20)

for all (v, q) belonging to the corresponding function space.

If solutions to the constrained minimization problem (2.19) or, equivalently,
of (2.20), are sufficiently smooth, then integration by parts can be used to
show that

∇ · u = f and u +∇p = 0 in Ω

p = 0 on Γ .
(2.21)

If u is eliminated from this system, we obtain the Poisson problem (2.6) for
p. Thus, (2.20) is another weak formulation5 of the Poisson problem (2.6).

5One reason why one would want to solve (2.21) instead of dealing directly with the
Poisson equation (2.6) is that in many applications u = −∇φ may be of greater interest
than φ, e.g., heat fluxes vs. temperatures, or velocities vs. pressures, or stresses vs.
displacements. Thus, since differentiation of an approximation φh could lead to a loss of
precision, the direct approximation of ∇φ becomes a matter of considerable interest.
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Both examples of saddle-point optimization problems can be cast into
the abstract form

a(u, v) + b(v, p) = F(v) ∀ v ∈ V (2.22)
b(u, q) = G(q) ∀ q ∈ S , (2.23)

where V and S are appropriate function spaces, a(·, ·) and b(·, ·) are bilin-
ear forms on V × V and V × S, respectively, and F(·) and G(·) are linear
functionals on V and S, respectively. The system (2.22)–(2.23) is a typical
optimality system for constrained minimization problems in which the bilin-
ear form a(·, ·) is symmetric and is related to a convex, quadratic functional
and (2.23) is a weak form of the constraint.

Well-posedness of (2.22)–(2.23) requires, among other things the follow-
ing two conditions; see, e.g., [17], [19]:

sup
u∈Z

a(u, v)
‖u‖V

≥ α‖v‖V ∀u ∈ Z (2.24)

and
sup
v∈V

b(v, q)
‖v‖V

≥ β‖q‖S ∀ q ∈ S , (2.25)

where the subspace Z is defined by

Z = {z ∈ V | b(z, q) = 0 ∀ q ∈ S} .

The first bound is almost always satisfied because a(·, ·) is defined by a
quadratic functional. The second bound (2.25), represents a compatibility
condition between the space V and the Lagrange multiplier space S. It
is more difficult to verify but is still satisfied for all problems of practical
interest. Thus, from theoretical viewpoint the use of Lagrange multipliers
did not introduce some serious difficulties. As we shall see in a moment, the
use of multipliers will, however, considerably complicate the finite element
method.

Suppose that V h ⊂ V and Sh ⊂ S are two finite element subspaces of
the “correct” function spaces. We restrict (2.22)–(2.23) to these spaces to
obtain the discrete problem

a(uh, vh) + b(vh, ph) = F(vh) ∀ vh ∈ V h (2.26)

b(uh, qh) = G(qh) ∀ qh ∈ Sh, (2.27)

which is a linear algebraic system of the form(
A B
BT 0

) (
Uh

P h

)
=

(
F h

Gh

)
. (2.28)
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The vectors Uh and P h contain the coefficients of the unknown functions
uh and ph, and A and B are blocks generated by the forms in (2.22)–(2.23).
The matrix in (2.28) is symmetric and indefinite; in contrast, the system
(2.10) for the Rayleigh-Ritz method was symmetric and positive definite.
Thus, (2.28) is more difficult to solve.

Still, solving (2.28) is not the main problem, making sure that this system
is nonsingular and gives meaningful approximations is! Indeed, equations
(2.26)–(2.27) are a discrete saddle-point problem. Therefore, unique, stable
solvability of these equations is subject to the same conditions as were nec-
essary for (2.22)–(2.23). In particular, it can be shown that (2.26)–(2.27)
is well posed if and only if V h and Sh satisfy the well-known inf-sup6, or
Ladyzhenskaya-Babuska-Brezzi (LBB),7 or div-stability condition8

there exists β > 0, independent of h, such that

sup
v∈V h

b(v, q)
‖v‖V

≥ β‖q‖S ∀q ∈ Sh (2.29)

and the bilinear form a(·, ·) is coercive on Zh×Zh, where Zh ⊂ V h denotes
the subspace of function satisfying the discrete constraint equations, i.e.,

Zh = {vh ∈ V h | b(q, vh) = 0 ∀ q ∈ Sh} .

The difficulty here is that

the inf-sup condition does not follow from the inclusions V h ⊂ V
and Sh ⊂ S,

which is in sharp contrast with Rayleigh-Ritz setting where conformity was
sufficient to provide well-posed discrete problems.

Note that the solution (uh, ph) ∈ V h × Sh of (2.26)–(2.27) is not a pro-
jection of the solution (u, p) ∈ V ×S of (2.22)–(2.23). To see this, note that
(2.22)–(2.23) may be expressed in the equivalent form: seek (u, p) ∈ V × S
such that

Qs(u, p; v, q) = H(v, q) ∀ (v, q) ∈ V × S ,

6The terminology “inf-sup” originates from the equivalent form
infq∈Sh supv∈V h

b(q,v)
‖q‖S‖v‖V

≥ β of this condition.
7The terminology “LBB” originates from the facts that this condition was first explic-

itly discussed in the finite element setting by Brezzi [19] and that is a special case of the
general weak-coercivity condition given by Babuska [16] for finite element methods and
that, in the continuous setting of the Stokes equation, this condition was first proved by
Ladynzhenskaya [7].

8The terminology “div-stability” arises from the application of this condition to the
Stokes problem in which the constraint equation is ∇ · u = 0.
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where Qs(u, p; v, q) ≡ a(u, v) + b(v, p) + b(u, q) and H(v, q) ≡ F(v) + G(q).
Likewise, (2.26)–(2.27) is equivalent to seeking (uh, ph) ∈ V h×Sh such that

Qs(uh, ph; vh, qh) = H(vh, qh) ∀ (vh, qh) ∈ V h × Sh .

These relations easily imply the usual finite element “orthogonality relation”

Qs(u− uh, p− ph; vh, qh) = 0 ∀ (vh, qh) ∈ V h × Sh .

However, this does not by itself imply, even though V h ⊂ V and Sh ⊂ S,
that (uh, ph) is an orthogonal projection onto V h× Sh of the exact solution
(u, p) ∈ V × S nor does it imply that the errors u − uh and p − ph are
quasi-optimally accurate. This follows from the fact that Qs(·; ·) does not
define an inner product on V × S.

2.3 Galerkin methods

Galerkin methods represent a formal (and very general) methodology that
can be used to derive variational formulations directly from PDE’s. The
paradigm of a Galerkin method is the residual orthogonalization. This prin-
ciple can be applied to any PDE, even if there’s no underlying optimization
problem. On the other hand, as we shall see, if such an optimization problem
exists, then Galerkin methods do recover the associated optimality system.
Because of this universality, Galerkin method has been a natural choice for
extending finite elements beyond differential equations problems associated
with minimization principles.

Let us first show that a Galerkin method can recover the optimality
system if the PDE is associated with an optimization problem. For the model
Poisson problem (2.6), the standard Galerkin approach is to multiply the
differential equation by a test function ψ that vanishes on Γ, then integrate
the result over the domain Ω, and then apply Green’s formula to equilibrate
the order the highest derivatives applied to the unknown φ and the test
function ψ; the result is exactly (2.3). For the Stokes problem (2.17), we
multiply the first equation by a test function v that vanishes on the boundary
Γ, integrate the result over Ω, and then integrate by parts in both terms
to move one derivative onto the test function. We also multiply the second
equation by a test function q and integrate the result over Ω. This process
results in exactly (2.16). Thus, we were able to derive exactly the same weak
formulations as before, working directly from the differential equation and
without appealing to any calculus of variations ideas. However, it is clear
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that there is some ambiguity associated with Galerkin methods, i.e., there
are some choices faced in the process. A given differential equation problem
can give rise to more than one weak formulation; we already saw this for
the Poisson problem for which we obtained the weak formulations (2.3) and
(2.20).

Let us now apply Galerkin method to a problem for which no corre-
sponding minimization principle exists. A simple example is provided by
the Helmholtz equation problem

−4φ− k2φ = f in Ω and φ = 0 on Γ . (2.30)

Using the same procedure as for the Poisson equation we find the weak
formulation of (2.30) to be∫

Ω
(∇φ · ∇ψ − k2φψ) dΩ =

∫
Ω
fψ dΩ ∀ψ ∈ H1

0 (Ω) . (2.31)

Note that the bilinear form on the left-hand side of (2.31) is symmetric but,
if k2 is larger than the smallest eigenvalue of −4, it is not coercive, i.e., it
does not define an inner product on H1

0 (Ω) ×H1
0 (Ω). As a result, proving

the existence and uniqueness9 of weak solutions is not so simple a matter as
it is for the Poisson equation case.

Another example of a problem without an associated optimization prin-
ciple is the convection-diffusion-reaction equation

−ε4φ+ b · ∇φ+ cφ = f in Ω and φ = 0 on Γ. (2.32)

Following the familiar Galerkin procedure for (2.32) results in the weak
formulation∫

Ω

(
ε∇φ · ∇ψ + ψb · ∇φ+ cφψ

)
dΩ =

∫
Ω
fψ dΩ ∀ψ ∈ H1

0 (Ω) . (2.33)

Now the bilinear form on the left-hand side of (2.33) is neither symmetric
or coercive.

The weak formulations (2.31) and (2.33) are examples of the abstract
problem: seek u ∈ V such that

Qg(u; v) = F(v) ∀ v ∈ V , (2.34)

where Qg(·; ·) is a bilinear form and F(·) a linear functional. Conforming
finite element approximations are defined in the usual manner. One chooses

9In fact, solutions of (2.30) or (2.31) are not always unique.
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a finite element subspace V h ⊂ V and then poses (2.34) on the subspace,
i.e., one seeks uh ∈ V h such that

Qg(uh; vh) = F(vh) ∀ vh ∈ V h . (2.35)

In general, the bilinear form Qg(·; ·) is not coercive and/or symmetric
and thus does not define an equivalent inner product on V . As a result,
unlike the Rayleigh-Ritz setting, the conformity of approximating space is
not sufficient to insure that the discretized problem (2.35) is well posed nor
that the approximate solution is quasi-optimally accurate.10 To insure that
it is indeed well posed, one must have that at least the weak coercivity or
(general) inf-sup conditions

inf
uh∈V h

sup
vh∈V h

Qg(uh; vh)
‖uh‖‖vh‖

≥ C and sup
uh∈V h

Qg(uh; vh)
‖uh‖

≥ 0

hold. We also note that the standard finite element “orthogonality” relation

Qg(u− uh; vh) = 0 ∀ vh ∈ V h (2.36)

is easily derived from (2.34) and (2.35). Since the bilinear form Qg(·; ·) does
not define an equivalent inner product on V , (2.36) does not imply that uh

is a projection onto V h of the exact solution u ∈ V , even though V h ⊂ V .
For the same reason and equivalently, (2.36) does not truly state that the
error u− uh is orthogonal to the approximating subspace V h.

A nonlinear example of a problem without a minimization principle, but
for which a weak formulation may be defined through a Galerkin method,
is the Navier-Stokes system for incompressible, viscous flows given by

−ν4u + u · ∇u +∇p = f in Ω
∇ · u = 0 in Ω

u = 0 on Γ ,
(2.37)

where the constant ν denotes the kinematic viscosity. A standard weak
formulation analogous to (2.16) but containing an additional nonlinear term
is given by

ν

∫
Ω
∇u : ∇v dΩ +

∫
Ω
p∇ · v dΩ

+
∫

Ω
u · ∇u · v dΩ =

∫
Ω

f · v dΩ ∀v ∈ H1
0(Ω) ,

(2.38)

10The discretized weak formulation (2.35) is equivalent to a linear algebraic system
of the type (2.10), but unlike the Rayleigh-Ritz setting, the coefficient matrix A is now
not symmetric for the weak formulation (2.33) and may not be positive definite for this
problem and for (2.31); in fact, it may even be singular.
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Ω
q∇ · u dΩ = 0 ∀ q ∈ L2

0(Ω) . (2.39)

Despite the close resemblance between (2.16) and (2.38)–(2.39), these two
problems are strikingly different in their variational origins. Specifically,
the second problem does not represent an optimality system, i.e., there is
no optimization problem attached to these weak equations. As a result,
(2.38)–(2.39) cannot be derived in any other way but through the Galerkin
procedure described above.

All these examples show the ease with which one can obtain weak prob-
lems for virtually any partial differential equation by following the Galerkin
recipe. The process used to derive the weak equations always leads to a
variational problem and did not require any prior knowledge of whether
or not there is a naturally existing minimization principle. However, the
versatility of the Galerkin method comes at a price. The limited expecta-
tions the method has with respect to an available mathematical structure
for the differential equation also makes its analysis and implementation a
more difficult matter than that for methods rooted in energy minimization
principles.
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Chapter 3

Modified variational
principles

The examples given in §2.1–§2.3 show that the further the variational frame-
work for a finite element method deviates from the Rayleigh-Ritz setting,
the greater are the levels of theoretical and practical complications associ-
ated with the method. These observations are summarized in Table 3.1.
Given the advantages of the Rayleigh-Ritz setting it is not surprising that
much effort has been spent in trying to recover or at least restore some of
its attractive properties to situations where it does not occur naturally. His-
torically, these efforts have developed in two distinct directions, one based
on

modifications of naturally occurring variational principles

and the other on the use of

externally defined, artificial energy functionals.

The second approach ultimately leads to bona fide least-squares variational
principles and finite element methods which are potentially capable of re-
covering the advantages of the Rayleigh-Ritz setting.

This chapter will focus on the first class of finite element methods. Even
though these methods do not recover all of the advantages of the Rayleigh-
Ritz setting they lead to important examples of finite element methods that
are used in practice. This class of methods also provides an illustration of
another useful application of least-squares as stabilization tool.

21
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Rayleigh-Ritz mixed Galerkin Galerkin
associated

optimization unconstrained constrained none
problem

properties of inner symmetric none
bilinear form product but in

form equivalent indefinite general
requirements inf-sup general
for existence/ none compatibility inf-sup
uniqueness condition condition

requirements conformity conformity and
on discrete conformity and discrete general discrete

spaces inf-sup condition inf-sup condition
properties symmetric, symmetric indefinite,
of discrete positive but not
problems definite indefinite symmetric

Table 3.1: Comparison of different settings for finite element methods in
their most general sphere of applicability.

3.1 Modification of constrained problems

The focus of this section will be on problems that are associated with con-
strained optimization of some convex, quadratic functional, i.e., we consider
the problem

min
u∈V

J(u) subject to Λ(u) = 0 . (3.1)

In (3.1) J(·) is a given energy functional, V a suitable function space, and
Λ(·) a given constraint operator. We assume that the constraint Λ(U) = 0 is
not a benign constraint, i.e., it is not easy to enforce on functions belonging
to V . In §2.2, the Lagrange multiplier method was used to enforce the
constraint. This led to the Lagrangian functional

L(u, µ) = J(u)+ < µ,Λ(u) > (3.2)

and the associated mixed Galerkin method. Note that (3.2) may be viewed
as a modification of the naturally occurring functional J(·) associated with
the given problem.

An alternate way to treat the constraint is through penalization; one
sets up an unconstrained minimization problem for the penalized functional

Jρ(u) = J(u) + ρ||Λ(u)||2 , (3.3)
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where ρ is a parameter and ‖ · ‖ is a norm that the user has to choose. The
use of penalty functionals in lieu of Lagrange functionals is one possibility
for developing better variational principles; however, the penalty approach
does not necessarily lead to better approximations.

One can combine Lagrange multipliers with penalty terms leading to the
augmented Lagrangian functional

La(u, µ) = J(u)+ < µ,Λ(u) > +ρ||Λ(u)||2 (3.4)

and the associated augmented Lagrangian method which result from its un-
constrained minimization. One can also penalize the Lagrangian functional
with a term involving the Lagrange multiplier instead of the constraint,
leading to the penalized Lagrangian functional

Lp(u, µ) = J(u)+ < µ,Λ(u) > +ρ||µ||2 (3.5)

and the associated penalized Lagrangian method.
Solutions of optimization problems connected with any of the function-

als (3.3)–(3.5) are not, in general, solutions of (3.1).1 This potential dis-
advantage associated with the use of these functionals can be overcome by
penalizing with respect to the residuals of the Euler-Lagrange equations of
(3.1), leading to the consistently modified Lagrangian functional

Lm(u, µ) = J(u)+ < µ,Λ(u) > +ρ||δJ(u)||2 (3.6)

and a Galerkin least-squares method. In (3.6), δJ(·) denotes the first varia-
tion of the functional J(·). Another possibility is to use both δJ(·) and its
adjoint δJ(·)∗. Then we have the consistent modification

Lm(u, µ) = J(u)+ < µ,Λ(u) > +ρ(δJ(u), δJ(u)∗) (3.7)

Alternatively, one can add the residuals to the Lagrange multiplier term,
leading to another consistently modified Lagrangian functional

Lc(u, µ) = J(u)+ < µ,Λ(u) + δJ(u) > (3.8)

and a stabilized Galerkin method. Both (3.6) and (3.8) are consistent modifi-
cation of the functional J(u), i.e., optimization with respect these functionals
yield solutions of the given problem (3.1).

1On the other hand, at least formally, optimization with respect to the functional (3.2)
does yields a solution of (3.1).
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In the next few sections we examine several examples of modified vari-
ational principles and their associated finite element methods. As a model
problem we use the familiar Stokes equations (2.17) and the optimization
problem (2.12). After a brief discussion of the classical penalty formulation
we turn attention to several examples of consistently modified variational
principles. The interested reader can find more details about the meth-
ods and other related issues in [18, 28, 29, 20, 38] for penalty methods;
[41, 26, 34, 32, 33, 25] for Galerkin least-squares and stabilized Galerkin
methods; and in [21] for augmented Lagrangian methods.

3.1.1 The penalty method

The penalty method for the Stokes equations (see [38]) is to minimize the
penalized energy functional

Jε(u, f) =
∫

Ω

1
2
|∇u|2 − f · udΩ +

1
ε
‖∇ · u‖2

0 (3.9)

over H1
0(Ω). Note that this unconstrained optimization problem has the

form (3.3). The Euler-Lagrange equations are given by (compare with the
problem (2.14)!):

seek u ∈ H1
0 (Ω) such that

∫
Ω
∇u : ∇v dΩ +

1
ε

∫
Ω
∇ · u∇ · v dΩ =

∫
Ω

f · v dΩ ∀v ∈ H1
0 (Ω) .

Alternatively, we could have obtained the same weak problem starting from
the regularized Stokes problem

4u +∇p = f in Ω
∇ · u = −εp in Ω,

(3.10)

eliminating p using the second equation, and applying a formal Galerkin
process. In the next section we will see that the same regularized problem
can also be obtained starting from a penalized Lagrangian formulation!

It may come as a surprise to the reader, but the penalty formulation
based on (3.9) does not really avoid the inf-sup condition (2.29) completely!
Early on it has been noticed that exact integration leads to a locking effect2

2In the sense that the approximate solution starts to converge to zero as h 7→ 0 even
when the exact solution is different from zero.
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and that the use of reduced integration can circumvent this problem. Further
studies of this phenomena have revealed that (see e.g., [45], [37]) penalty
formulation can be always related to a mixed formulation by virtue of an
implicitly induced “pressure” space. The exact form of this space depends
on the treatment of the penalty term. For instance, if exact integration is
used this space can be identified with divergencies of functions in V h, i.e.,

P h = {qh = ∇ · vh |vh ∈ V h}.

In any case, the pair (V h, P h) still must satisfy the inf-sup condition even
though the pressure space is not explicitly present in the formulation.

3.1.2 Penalized and Augmented Lagrangian formulations

Instead of penalizing the original Stokes energy functional in these methods
one penalizes the associated Lagrangian functional according to (3.4) and
(3.5). We will see in a moment that in some cases this leads to the same
regularized Stokes problem as in the previous section.

The penalized Lagrangian method for the Stokes problem is defined by
adding the penalty term (ε/2)‖p‖2

0 to (2.15). This produces the penalized
Lagrangian

Lε(u, p; f) = L(u, p; f) +
ε

2
‖p‖2

0.

This functional has the form of (3.5). If we write the optimality system for
the new functional, taking variation with respect to the Lagrange multiplier
p gives the penalized equation∫

Ω
q∇ · udΩ + ε

∫
Ω
qpdΩ = 0 ∀q ∈ L2

0(Ω).

This equation is weak form of the modified continuity equation in (3.10).
Because it holds for all q we can conclude that

∇ · u = −εp in Ω.

Therefore, using the penalized Lagrangian leads to essentially the same for-
mulation (3.10) as direct penalization of the Stokes energy functional by the
incompressibility constraint.

Another variation of the penalized Lagrangian method is to penalize
(2.15) by the gradient of the pressure leading to the penalized Lagrangian

Lε(u, p; f) = L(u, p; f) +
ε

2
‖∇p‖2

0.
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This variation of the penalized Lagrangian method is equivalent to regu-
larization of the Stokes problem by ε4p. As in (3.10) the regularization is
effected by modification of the continuity equation, leading to the regularized
Stokes problem

4u +∇p = f in Ω
∇ · u = ε4p in Ω,

(3.11)

in which case it is also necessary to close the equations by adding a Neumann
boundary condition on the pressure. Because the weak form of (3.11) will
include ∇p, the pressure space must be continuous. This formulation cannot
be directly related to a penalty method based on penalization of the Stokes
energy functional.

Regularization of the Stokes problem according to (3.10) or (3.11) im-
proves the quasi-projection associated with the saddle-point problem for
(2.15) by changing the zero block in the algebraic system (2.28) to a posi-
tive definite block. The new algebraic system has the form(

A B
BT εB

) (
Uh

P h

)
=

(
F h

Gh

)
. (3.12)

For (3.10) B is the mass matrix of the pressure basis, while for (3.11) B is
the Dirichlet matrix of this basis (this matrix is positive definite provided
the zero mean constraint (2.18) is satisfied by the pressure.) Therefore, the
advantage of (3.12) over (2.28) is that now we have to solve a symmetric
and positive definite algebraic system instead of an indefinite problem.

The augmented Lagrangian method results from changing (2.15) accord-
ing to (3.4). In other words, instead of penalizing L(u, p; f) by the norm of
the Lagrange multiplier p we now penalize this functional by the norm of the
constraint. The augmented Lagrangian for the Stokes problem is, therefore,
given by

Lε(u, p; f) = L(u, p; f) +
ε

2
‖∇ · u‖2

0.

For further details regarding these methods we refer to [21] and [5].

3.1.3 Consistent stabilization

The idea of consistent stabilization is to effect the stabilization by means
of terms that vanish on the exact solution. The modification is carried in
a manner which introduces the desired terms to the variational equation.
As a result, consistency is achieved thanks to the fact that the modified
variational equation is always satisfied by the exact solution. These meth-
ods, widely known as Galerkin-Least-squares, or stabilized Galerkin were
introduced in [41], and studied in [26], [33]-[34], among others.
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The method of Hughes, Franca and Balestra

From (3.12) we saw that regularization of the Stokes problem improves the
quasi-projection by adding a positive-definite term to the mixed algebraic
problem (2.28). Because regularization directly adds the desired pressure
term to the equations it is always accompanied by a penalty error propor-
tional to ε. The idea of consistent stabilization is to add the pressure term
by including it in an expression that always vanishes on the exact solution.

An obvious candidate for this task is the residual of the momentum equa-
tion which contains the desired term∇p. However, this residual also contains
the second order term −4u which is not meaningful for standard, C0 finite
element spaces. The solution is to introduce the stabilizing term separately
on each element (unless of course one is willing to consider continuously
differentiable velocity approximations). Thus, one possibility, considered in
[41], is to change the discrete continuity equation (2.27) to

b(uh, qh) + α
∑
K
h2
K(−4uh +∇ph − f,∇qh)0 = 0. (3.13)

This modification introduces the stabilizing term (∇ph,∇qh) which gives the
same block in the linear system as the penalty method based on (3.11), but
without the penalty error. However, as with (3.11), the pressure space must
contain at least first degree polynomials because otherwise the stabilizing
term will not give any contribution to the matrix. A more subtle issue is
the space for the velocity: if u is approximated by piecewise linear finite
elements the term 4uh does not contribute to the matrix and consistency is
lost! This problem can be avoided either by using higher degree polynomials
for the velocity, or by using a projection of the second order term; see [43].

Let us now show rigorously that (3.13) does indeed give a coercive bi-
linear form. Although it is possible to look for a suitable interpretation of
(3.13) in terms of bilinear forms in Sobolev spaces, it is easier to work di-
rectly with the discrete equations. For this purpose we introduce a mesh
dependent norm

|||(uh, ph)||| =
(
‖uh‖2

1 +
∑
K∈Th

h2
K‖∇p‖2

0,K

)1/2
(3.14)

and a mesh dependent bilinear form

Q({uh, ph}; {vh, qh}) = a(uh,vh) + b(ph,vh)− b(qh,uh) (3.15)

+ α
∑
K∈Th

h2
K(−4uh +∇ph,∇qh)0,K.
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We will show that form (3.15) is coercive in (3.14) on V h×Sh. Indeed, using
Poincare’s inequality (2.7) for a(u,u) = |u|21 and the inverse inequality (see
[3]) for the second order term

Q({uh, ph}; {uh, ph}) = a(uh,uh)+

α
∑
K∈Th

h2
K

(
(−4uh,∇ph)0,K + (∇ph,∇ph)0,K

)
≥ CP ‖uh‖2

1 + α
∑
K∈Th

h2
K

(
‖∇ph‖2

0,K − ‖4uh‖0,K‖∇ph‖0,K

)
≥ CP ‖uh‖2

1 + α
∑
K∈Th

h2
K

(
‖∇ph‖2

0,K − Cih
−1‖∇uh‖0,K‖∇ph‖0,K

)
.

From the ε-inequality

Cih
−1‖∇uh‖0,K‖∇ph‖0,K ≤ 2Cih−2‖∇uh‖2

0,K +
1
2
‖∇ph‖2

0,K

which gives bound for the mesh-dependent term:

α
∑
K∈Th

h2
K

(
‖∇ph‖2

0,K − Cih
−1‖∇uh‖0,K‖∇ph‖0,K

)
≥ α

2

∑
K∈Th

(h2

2
‖∇ph‖2

0,K − 2Ci‖∇uh‖2
0,K

)
=

α

2

∑
K∈Th

h2‖∇ph‖2
0,K − 2αCi‖∇uh‖2

0.

As a result,

Q({uh, ph}; {uh, ph}) ≥ (CP − 2αCi)‖uh‖2
1 +

α

2

∑
K∈Th

h2‖∇ph‖2
0,K.

The choice of the parameter α is very important for proper stabilization.
First, note that a very small α will effectively reduce the stabilized formu-
lation to the usual mixed Galerkin method. At the same time α cannot be
chosen too large because then the term (CP − 2αCi) will become negative!
In fact, even such “innocent” looking value as α = 1 has been found to
be “destabilizing” for some regions. Looking back at the coefficient of the
velocity norm it seems reasonable to choose α so that

CP
2Ci

> α > 0.
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The problem is that both CP (the Poincare constant) and Ci (the inverse
inequality constant) are hard to find in general. This is especially true when
triangulations are unstructured and involve elements of different sizes and
aspect ratios. One case when Ci is known is for square elements and Q2

spaces. Then its value equals 270/11; see [41].

Galerkin-Least Squares method of Franca and Frey

Galerkin-Least squares (GLS) stabilization is the next logical step from the
consistent stabilization method of [41]. It is based again on adding a properly
weighted term which contains the residual of the momentum equation in
(2.17), but now this term is of least-squares type; see [34]. The second order
velocity derivative in the momentum equation makes it necessary again to
add stabilizing terms on an element by element basis and the the modified
discrete continuity equation now takes the form

b(uh, qh) + α
∑
K
h2
K(−4uh +∇ph − f,−4vh +∇qh)0 = 0. (3.16)

The name “least-squares” can be explained as follows. If the Lagrange
functional for the Stokes problem is penalized by the square of the L2-norm
residual of the momentum equation

α

2
‖ −4u +∇p− f‖2

0

then the first variation of the penalized functional will include the terms

(−4u +∇p− f,−4v +∇q)0.

This is precisely the situation described by the abstract setting of (3.6). The
coercivity bound for GLS can be established using the same techniques as
in the previous method, and it again depends on the choice of α:

Q({uh, ph}; {uh, ph}) ≥ (CP − 2αCi)‖uh‖2
1 +

α

2

∑
K∈Th

h2‖∇ph‖2
0,K.

Thus, effecting stabilization through GLS encounters the same difficulties
as the method of [41] - parameter α depends on the values of Poincare and
inverse inequality constants. To see why this also happens in the Galerkin
Least-Squares setting, consider the mesh dependent term

α
∑
K
h2
K‖ −4uh +∇ph‖2

0,K
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that appears in GLS form Q({uh, ph}; {uh, ph}). To show coercivity this
term is bounded from below by

α
∑
K
h2
K

(
‖∇ph‖2

0,K − ‖4uh‖2
0,K

)
and ‖4uh‖2

0,K is converted to a first-order term using the inverse inequality.
This necessarily introduces the constant Ci into the coercivity bound.

The method of Douglas and Wang

This method, introduced in [32], is very similar to the GLS method of [34],
but it cannot be linked directly to addition of a least-squares type term to
the Lagrangian functional (2.15). The modified discrete continuity equation
for Douglas-Wang stabilization is

b(uh, qh) + α
∑
K
h2
K(−4uh +∇ph − f,4vh +∇qh)0 = 0. (3.17)

The seemingly minor change of the sign in front of the second order term
for the test function allows to derive coercivity bound which is independent
of the parameter α:

Q({uh, ph}; {uh, ph}) ≥ CP ‖uh‖2
1 + αC

∑
K∈Th

h2‖∇ph‖2
0,K.

As a result, this method is stable for any positive value of α. This method
can be interpreted as using the adjoint operator L∗ to effect the stabilization,
i.e., it has the form (3.7). Again, the actual implementation depends on the
order of the finite element space used for the velocity.

3.2 Modification of problems without optimiza-
tion principles

For differential equation problems not related to minimization principles
such as (3.1), the weak formulation

Qg(u; v) = F (v) ∀ v ∈ V (3.18)

is not an optimality system; instead, it is a formal statement of residual
orthogonalization. Modifications are now effected directly to (3.18). Adding
a small dissipative term yields the modified weak problem

Qg(u; v) + ε(D(u), D(v)) = F (v) ∀ v ∈ V (3.19)
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and artificial diffusion methods. In (3.19), ε denotes an artificial diffusiv-
ity coefficient and D(·) denotes a differential operator. Similar to penalty
methods, (3.19) leads to inconsistencies in the sense that its solutions are
not, in general, solutions of (3.18). Consistency errors can be avoided if one
uses equations residuals R(u) in the modified problem

Qg(u; v) + (R(u),W (v)) = F (v) ∀ v ∈ V .

If the test function W (·) is the same as R(·), one is led to Galerkin least-
squares methods; if W (·) is different, one can be led to a class of upwinding
methods. Modification of the test function in (3.18)

Qg(u;R(v)) = F (v) ∀ v ∈ V

lead to Petrov-Galerkin methods which are another class of upwinding meth-
ods.

In many cases, exactly the same methods can be derived by direct modi-
fication of the differential equations or direct modification of a corresponding
Galerkin weak form (3.18). If an optimization principle such as (3.1) is avail-
able, the same methods can often be also derived through modification of
the functional J(·). The first approach is the least revealing and the last
the most with respect to the fundamental role played by variational princi-
ples. One should also note that two modifications that appear different may
lead to the same method and a single modification can give rise to different
methods depending on the choices made for the function spaces, norms, etc.

3.2.1 Artificial diffusion and SUPG

Below we consider two examples of modified formulations for the reduced
problem

b · ∇φ+ cφ = f in Ω and φ = 0 on Γ−. (3.20)

In (3.20) the symbol Γ− is used to denote the inflow portion of the boundary.
We refer the reader to [39, 40, 24, 30, 44, 31] for more details about the
resulting upwind schemes.

Application of the Galerkin method to (3.20) gives the weak equation∫
Ω

(
ψb ·∇φ+ cφψ

)
dΩ =

∫
Ω
fψ dΩ ∀ψ ∈ H1(Ω); ψ = 0 on Γ− . (3.21)

The artificial diffusion method for (3.20) modifies (3.21) to

ε

∫
Ω
∇φ · ∇ψ dΩ +

∫
Ω
(ψb · ∇φ+ cφψ) dΩ =

∫
Ω
fψ dΩ (3.22)
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while the consistent SUPG method (see [39, 44]) employs the weak problem∫
Ω
h(b · ∇φ+ cφ− f)(b∇ · ψ) dΩ+∫

Ω
(ψb · ∇φ+ cφψ) dΩ =

∫
Ω
fψ dΩ . (3.23)

3.3 Modified variational principles: concluding re-
marks

Each of the mixed-Galerkin, stabilized Galerkin, penalty, and augmented
Lagrangian class of methods have their adherents and are used in practice;
none, however, have gained universal popularity. Part of the problem is
that the success of these methods often critically depends on various mesh-
dependent calibration parameters that must be fine tuned from application
to application. The purpose of these parameters is to adjust the relative
importance between the original variational principle and the modification
term. Often, the best possible value of the parameter cannot be determined
in a constructive manner, leading to under/over stabilization or even loss
of stabilization; see, e.g., [34]. The analysis of many of these methods also
remains an open problem for important nonlinear equations such as the
Navier-Stokes equations.



Chapter 4

Least-squares methods: first
examples

In this chapter we take a first look at some possible answers to the following
question:

for any given partial differential equation problem, is it possible
to define a sensible convex, unconstrained minimization principle
if one is not already available, so that a finite element method
can be developed in a Rayleigh-Ritz-like setting?

Given the attractive computational and analytic advantages of true inner
product projections, this questions seems very logical. Obviously, to an-
swer this question we cannot use the methods discussed in §2.2, §2.3, and
Chapter 3. In §2.2, a saddle-point variational principle was introduced from
the very beginning as a way of dealing with the constraints. In §2.3, it
was demonstrated that the formal Galerkin method leads to weak problems
whose features are always inextricably tied to those of the partial differential
equation problem. In Chapter 3, we saw that modifications of the natural
variational principle can recover some but not all of the desirable features
of the Rayleigh-Ritz setting.

Modern least-squares finite element methods are a methodology that
answers this question in a positive way through a variational framework
based on the idea of residual minimization. This idea is as universal as the
idea of residual orthogonalization which is the basis of the Galerkin method
and so it can be applied to virtually any PDE problem. However, unlike the
residual orthogonalization, when properly executed, residual minimization
has the potential to define inner product projections even if the original
problem is not at all associated with optimization.

33
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The central premise underlying least-squares principles is the interpre-
tation of a selected measure of the residual as an “energy” that must be
minimized, with the exact solution being the one having zero energy. From
this perspective, an appropriate least-squares “energy” functional can be
set up immediately by summing up the squares of the equation residuals,
each one measured in some suitable norm. The resulting energy functional
more often than not has no physical meaning, but it offers the advantage
of transforming the partial differential problem into an equivalent convex,
unconstrained minimization problem.

In order to fully emulate the Rayleigh-Ritz setting it is critical to define
a least-squares functional that is also norm-equivalent in some Hilbert space.
Then, least-squares variational principles fit into the attractive category of
orthogonal projections in Hilbert spaces with respect to problem-dependent
inner products. Once the partial differential equation problem is recast
into such a variational framework, stability prerequisites such as inf-sup
conditions are no longer needed for the well-posedness of the weak problem.
Let us now try to apply these ideas to some of the examples from §2.1–§2.3.

4.1 Poisson equation

Let us begin with the Poisson problem (2.6) and ignore the fact that for
this problem there already exist a convex energy functional (2.1) and uncon-
strained optimization problem (2.2). We will proceed directly with the PDE
(2.6). In order to point out another advantage of least-squares methods, we
will generalize (2.6) to include the inhomogeneous boundary condition φ = g
on Γ. Thus, there are two residuals: the differential equation residual

−4φ− f

and the boundary condition residual

φ− g .

To define an “energy” functional based on these two residuals. we choose
the simplest L2-norm:

J(φ; f, g) = ‖4φ+ f‖2
0 + ‖φ− g‖2

0,Γ . (4.1)

This convex, quadratic functional is minimized by the exact solution,1 i.e.,
by φ such that −4φ = f in Ω and φ = g on Γ. Then, we set up a least-
squares minimization principle

1To be precise, the exact solution must be sufficiently smooth because otherwise the
term 4φ will not be square integrable.
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seek φ in a suitable space X such that J(φ; f, g) ≤ J(ψ; f, g) for
all ψ ∈ X.

Next, using standard techniques from the calculus of variations, it is easy
to see that all minimizers of (4.1) must satisfy the optimality system

seek φ ∈ X such that∫
Ω
4φ4ψ dΩ +

∫
Γ
φψ dΓ

= −
∫

Ω
f4ψ dΩ +

∫
Γ
gψ dΓ ∀ψ ∈ X .

(4.2)

The final steps are to choose a trial space Xh ⊂ X and then restrict (4.2)
to Xh to obtain2

seek φh ∈ Xh such that∫
Ω
4φh4ψh dΩ +

∫
Γ
φhψh dΓ

= −
∫

Ω
f4ψh dΩ +

∫
Γ
gψh dΓ ∀ψh ∈ Xh .

(4.3)

This is simply a linear algebraic system.
Using integration by parts, it is easy to see that smooth solutions of (4.2)

satisfy the biharmonic boundary value problem

−44φ = 4f in Ω (4.4)

and

−4φ = f and
∂(4φ+ f)

∂n
− (φ− g) = 0 on Γ . (4.5)

Therefore, smooth solutions of (4.2) satisfy a differentiated form of that
problem. Equivalently, the minimization of the least-squares functional
(4.1) corresponds to the solving the biharmonic problem (4.4) and (4.5).
Of course, solutions of the latter are solutions of the Poisson problem.

4.2 Stokes equations

Consider now the Stokes equations (2.17). For this problem there’s no “nat-
ural” unconstrained, convex, quadratic minimization problem; we only have

2The system (4.3) can also be derived by directly minimizing the functional (4.1) over
the finite element subspace Xh.
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the constrained optimization problem (2.12). However, we can define an
“artificial” energy functional by minimizing the sum of the squares of the
L2-norms of the equation residuals, i.e.,

J(u, p; f ,g) = ‖ −4u +∇p− f‖2
0 + ‖∇ · u‖2

0 + ‖u− g‖2
0,Γ . (4.6)

Then, the optimality system corresponding to the minimization of this func-
tional is given by∫

Ω
(−4u +∇p) · (−4v +∇q) dΩ +

∫
Ω
(∇ · u)(∇ · v) dΩ

+
∫

Γ
u · v dΓ =

∫
Ω

f · v dΩ +
∫

Γ
g · v dΓ ,

(4.7)

where u and p belong to appropriate (unconstrained) function spaces and
where v and q are arbitrary in those function spaces. We can then de-
fine a discrete problem by either restricting (4.7) to appropriate finite ele-
ment subspaces for the velocity and pressure or, equivalently, by minimizing
the functional (4.6) with respect to those approximating spaces. Note that
smooth solutions of (4.7), or equivalently, smooth minimizers of (4.6), are
not directly solutions of the Stokes equations, but instead are solutions of an
equivalent system of partial differential equations that may be determined
from the Stokes equations through differentiations and linear combinations.
The order of that system is higher than that for the Stokes equations, e.g.,
the equations include terms such as 44u and 4p.

4.3 PDE’s without optimization principles

Least-squares principle can be applied to problems for which no natural
minimization principle, either constrained or unconstrained, exists. For ex-
ample, for the Helmholtz problem (2.30), we can define the functional

J(φ; f, g) = ‖4φ+ k2φ+ f‖2
0 + ‖φ− g‖2

0,Γ (4.8)

and then proceed as in the Poisson case to derive, instead of (4.2), the weak
formulation

seek φ ∈ X such that∫
Ω
(4φ+ k2φ)(4ψ + k2ψ) dΩ +

∫
Γ
φψ dΓ

= −
∫

Ω
f(4ψ + k2ψ) dΩ +

∫
Γ
gψ dΓ ∀ψ ∈ X .

(4.9)
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Another example is provided by the convection-diffusion problem (2.32) for
which we can define the functional

J(φ; f, g) = ‖ −4φ+ b · ∇φ+ f‖2
0 + ‖φ− g‖2

0,Γ (4.10)

and then derive the weak formulation

seek φ ∈ X such that∫
Ω
(−4φ+ b · ∇φ)(−4ψ + b · ∇ψ) dΩ +

∫
Γ
φψ dΓ

= −
∫

Ω
f(−4ψ + b · ∇ψ) dΩ +

∫
Γ
gψ dΓ ∀ψ ∈ X .

(4.11)

4.4 A critical look

The variational equations, i.e., weak formulations, derived from least-squares
principles all have the form

seek U in some suitable function space X such that

Q(U ;V ) = F (V ) ∀V ∈ X , (4.12)

where U denotes the relevant set of dependent variables, Q(·; ·) is a sym-
metric bilinear form, and F· is a linear functional. In contrast to the weak
problems of §2.1–§2.3:

• the bilinear forms in the least-squares weak formulations are all sym-
metric;

• in all cases the bilinear forms may possibly be coercive;

• it is now possible to obtain positive definite discrete algebraic systems
in all cases.

In general, positive definiteness3 is a consequence of the norm-equivalence of
the least-squares functional and here we have not yet established that any
of the functionals introduced in this section are norm equivalent, i.e., that
the expressions

J(φ; 0, 0) = ‖4φ‖2
0 + ‖φ‖2

0,Γ

for the Poisson equation,

J(u, p;0,0) = ‖ −4u +∇p‖2
0 + ‖∇ · u‖2

0 + ‖u‖2
0,Γ

3Positive semi-definiteness is obvious.
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for the Stokes equations,

J(φ; 0, 0) = ‖4φ+ k2φ‖2
0 + ‖φ‖2

0,Γ

for the Helmholtz equation, and

J(φ; 0, 0) = ‖ −4φ+ b · ∇φ‖2
0 + ‖φ‖2

0,Γ

for the convection-diffusion equation define equivalent norms on the Hilbert
spaces over which the respective least-squares functionals are minimized. It
turns out that this issue is essentially equivalent to the well-posedness of the
boundary value problem in some function spaces.

While mathematical well-posedness is important we should not forget
that the ultimate goal is to devise a good computational algorithm. There-
fore, the methods must also be practical. This is a rather subjective charac-
teristic, but if we want to be competitive with existing methods it is desirable
that

• the matrices and right-hand sides of the discrete problem should be
“easily” computable,

• discretization should be accomplished using standard, “easy to use”
finite element spaces

• discrete problem should have a “manageable” condition number.

Let us see if the methods devised so far meet our criteria for practicality.
First, all four variational equations include terms such as either∫

Ω
4φ4ψ dΩ or

∫
Ω
4u · 4v dΩ .

and the corresponding discrete equations include terms such as either∫
Ω
4φh4ψh dΩ or

∫
Ω
4uh · 4vh dΩ .

Recall that finite element spaces consist of piecewise polynomial functions.
Therefore, each term is well-defined within an element. The problem is
that these terms will not be well-defined across element boundaries unless
the finite element spaces are continuously differentiable. In more than one
dimension such spaces are hardly practical. As a result, any method that
uses such terms, including the methods introduced here, is impractical. A
further observation is that the condition numbers of the discrete problems
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associated with these methods, even if we use smooth finite element spaces,
are O(h−4). This should be contrasted with, e.g., the Rayleigh-Ritz finite
element method for the Poisson equation for which the condition number
of the discrete problem is O(h−2). Therefore, the least-squares finite ele-
ment methods discussed so far fail the third practicality criterion as well.
Another observation is that weak solutions are now required to posses two
square integrable derivatives as opposed to only one in Galerkin methods.
Early examples of least-squares finite element methods shared these practical
disadvantages and for these reasons they did not, at first, gain popularity.

These observations indicate that development of a practical and mathe-
matically solid least-squares method requires more than merely choosing the
most obvious least-squares functional. This should not come as a surprise if
we recall that

least-squares functionals are not necessarily physical quantities,
i.e., unlike an energy minimization principle derived from physi-
cal laws, a least-squares principle can be set up in many different
ways!

In particular, some of these ways may turn out to be less than useful. We
will see that this ambiguity is in actuality an asset as it allows us to better
“fine tune” the least-squares method to the problem in hand.

Let us now introduce some of the techniques that have been developed
over the years and that can be used to obtain practical least-squares meth-
ods. A simple, yet effective method of eliminating high-order derivatives is
to rewrite the equations as an equivalent first-order system4. For the Pois-
son problem, instead of working with the functional (4.1), we consider an
alternative one given by

J(φ,u; f, g) = ‖∇ · u− f‖2
0 + ‖∇φ− u‖2

0 + ‖φ− g‖2
0 . (4.13)

This functional is based on the equivalent first-order system (2.21) with an
inhomogeneous boundary condition. Minimization of this functional results
in a least-squares variational problem of the form (4.12), but now with

Q(U ;V ) =
∫

Ω
(∇ · u)(∇ · v) dΩ +

∫
Ω
(∇φ− u) · (∇ψ − v) dΩ +

∫
Γ
φψ dΓ

and
F (V ) =

∫
Ω
f∇ · v dΩ +

∫
Γ
gψ dΓ ,

4This can be done in many ways, so in a sense using first-order formulations increases
the level of “ambiguity”. However, as already mentioned, this is in fact a flexibility of the
approach instead.
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where U = (φ,u) and V = (ψ,v). The idea of using equivalent first-order
formulations of second-order problems is reminiscent of the mixed-Galerkin
methods of §2.2. However, now we can choose any pair of finite element
spaces for approximating φ and u since, unlike the mixed-Galerkin case, we
are not required to satisfy an inf-sup stability condition. The first-order sys-
tem based least-squares formulation also results in algebraic systems having
condition numbers much the same as that for Galerkin methods. Thus, if
we compare the two least-squares methods for the Poisson equation, i.e.,
one based on the functional (4.1), the other on (4.13), it is clear that the
second one is superior and more likely to be competitive with, e.g., the
mixed-Galerkin method.

The next question is that of norm-equivalence, i.e., whether

J(φ,u; 0, 0) = ‖∇ · u‖2
0 + ‖∇φ− u‖2

0 + ‖φ‖2
0,Γ

defines a norm on a suitable Hilbert space. If (4.13) were norm-equivalent,
the resulting least-squares method would fit nicely in the same framework
as that for the Rayleigh-Ritz problem: existence and uniqueness of solutions
along with quasi-optimality of the finite element approximations are guaran-
teed for any conforming discretization of the weak problem. Unfortunately,
(4.13) does not have this property. A norm-equivalent functional for the
first-order system (2.21) is

J(φ,u; f, g) = ‖∇ · u− f‖2
0 + ‖∇φ− u‖2

0 + ‖φ− g‖2
1/2,Γ , (4.14)

where the boundary residual is measured in a fractional order trace norm.
The new obstacle here is the conflict between norm-equivalence and prac-
ticality: in order to achieve norm-equivalence, we had to include the trace
norm in the functional; unfortunately, this norm is difficult to compute.
This problem cannot be avoided by changing the formulation since bound-
ary terms necessarily require fractional norms regardless of the order of the
differential operator. The easiest remedy is simply to drop the boundary
residual and enforce the boundary condition on the trial space. Another
remedy is to replace the fractional norm by a mesh-dependent weighted L2-
norm:

J(φ,u; f, g) = ‖∇ · u− f‖2
0 + ‖∇φ− u‖2

0 + h−1‖φ− g‖2
0,Γ . (4.15)

In contrast to the functional (4.14), this weighted functional is not norm-
equivalent on the same Hilbert space, but it has properties that resemble
norm-equivalence when restricted to a finite element space.
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The conflict between norm-equivalence and practicality is not necessarily
caused by boundary residual terms. For example, assuming that boundary
conditions are satisfied exactly,

J(φ,u; f) = ‖∇ · u− f‖2
−1 + ‖∇φ− u‖2

0 (4.16)

is another norm-equivalent functional for the first-order Poisson problem
(2.21). This functional is no more practical than (4.14) because the negative
order norm ‖ · ‖−1 is again not easily computable. To get a practical func-
tional, this norm must be replaced by some computable equivalent. One
approach is to use a scaling argument and replace (4.16) by the weighted
functional

J(φ,u; f) = h2‖∇ · u− f‖2
0 + ‖∇φ− u‖2

0 . (4.17)

Another approach is to consider a more sophisticated replacement for (4.16)
which uses a discrete negative norm defined by means of preconditioners for
the Poisson equation.

4.4.1 Some questions and answers

The basic components of a least-squares method can be summarized as
follows:

• a (quadratic, convex) least-squares functional that measures the size
of the equation residuals in appropriate norms;

• a minimization principle for the least-squares functional;

• a discretization step in which one minimizes the functional over a finite
element trial space.

Obviously, this methodology can be applied to any given PDE. Therefore,
the first question is:

• When is the least-squares approach justified?

We also saw that there are many freedoms in the way this methodology can
be applied to a given PDE. Therefore, another question is:

• How to quantify the best possible least-squares setting for a given
PDE?
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The answer to the first question is quite obvious: attractiveness of least-
squares depends on the type of quasi-projection that can be associated with
the Galerkin method. In particular, the appeal of a least-squares method
increases with the deviation of the naturally occurring variational setting
from the Rayleigh-Ritz principle.

The answer to the second question is not hard too: since we wish to
simulate a Rayleigh-Ritz setting the variational equation must correspond
to a true inner product projection. This is the same as to say that the
least-squares functional must be norm equivalent.

Having found answers to these two questions we see that another one
immediately arises:

• Will the “best” least-squares principle, as dictated by analyses, be also
the one that is most convenient to use in practice?

Our examples show that often the answer to this question is negative – high-
order derivatives, fractional norms, negative norms, all conspire to make the
best functional less and less practical. Thus, we have reached the crux of
the matter in least-squares development:

• How does one reconcile the “best” and the “most convenient” princi-
ples?

This question has generated a tremendous amount of research activity,
among practitioners and analysts of least-squares methods. The use of
equivalent first-order reformulations (often dubbed FOSLS approach) pro-
posed in the late 70’s has become a powerful and by now a standard tool in
least-squares methodologies; see [65, 67, 68, 66, 69, 70], [75, 78, 79, 80, 81,
82, 83], [88, 92, 89, 90, 91] and [98, 99, 100], among others.

This idea is often combined with other tools such as weighted norms,
[46, 56, 57] and more recently, discrete negative norms [62, 63, 64] and
[49, 50, 53]. The purpose of these tools is to provide the desired reconcilia-
tion between the “most-convenient” and the “best” least-squares principles.
Formalization of this concept is the subject of the next chapter.



Chapter 5

Continuous and discrete
least-squares principles

This chapter discusses some universal principles that are encountered in
the development of least-squares methods. In particular we will introduce
the notions of continuous and discrete least-squares principles. In what
follows we adopt the stance that the single most important characteristic
of least-squares methods is the true projection property which creates a
Rayleigh-Ritz-like environment whenever one is not available naturally.

Given a PDE problem our first task will be to identify all norm-equivalent
functionals that can be associated with the differential equations. In section
5.1, we show that such functionals are induced by a priori estimates for the
partial differential equation problem: the data spaces suggested by the es-
timate provide the appropriate norms for measuring the residual “energy”
while the corresponding solution spaces provide the candidate minimizers.
The class of all such Continuous Least-Squares (CLS) principles is gener-
ated by considering all equivalent forms of the partial differential equation
together with their valid a priori estimates. Therefore, a CLS principle
describes

an “ideal” setting in which the balance between the “artificial”
residual energy and the solution norm is mathematically correct.

As we have already seen, mathematically ideal least-squares principles
are not necessarily the most practical to implement. Therefore, the next
item on our agenda will be to reconcile the theoretical demands with the
practicality constraints. We will refer to the outcome of this process as a
Discrete Least-Squares (DLS) principle. A DLS principle represents

43
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a compromise between mathematically desirable setting and prac-
tically feasible algorithm.

It is a fact of life that “practicality” is a rigid constraint so the remedy
must be sought by either enlarging the class of CLS principles until it con-
tains a satisfactory one and/or by transforming a CLS principle into a DLS
one via a process that may involve sacrificing some of the Rayleigh-Ritz-like
properties.

Enlarging of the CLS class is accomplished by using equivalent refor-
mulated problems. Typically, reformulation involves reduction to first-order
systems, but another approaches like the LL∗ method (see [70]) are also
possible. As a result, one often gains additional tangible benefits such as
being able to obtain direct approximations of physically relevant variables.

Transformation of CLSP to a practical DLSP is usually much more trick-
ier, especially if a good method is desired. This process calls for lots of inge-
nuity and often must be carried on a case by case basis. If such transforma-
tion is necessary it is almost always accompanied by some loss of desirable
mathematical structure. Fundamental properties of resulting least-squares
finite element methods depend upon the degree to which the mathematical
structure imposed by the CLS principle has been compromised during its
transformation to DLS principle.

In the ideal case, the CLSP class contains a principle which meets all
practicality constraints without any further modifications so that the DLS
principle is obtained by simple restriction to finite element spaces. Clearly,
this situation describes a conforming finite element method, where

the discrete “energy” balance of the DLS principle represents re-
striction to finite element spaces of a mathematically correct re-
lation between data and solution.

If this is not possible, then the next best thing is a CLS principle with a
mathematical structure that can be recreated on finite element spaces in a
manner that captures the essential “energy” balance of the continuous prin-
ciple and reproduces it independently of any grid-size parameters. Trans-
formation of this CLS principle involves the construction of sophisticated
discrete norms which ensure that

the discrete “energy” balance of DLS principle represents a math-
ematically correct relation between data and solution on finite el-
ement spaces despite not being a restriction of a CLS principle.
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We call resulting DLS principle and method norm-equivalent. While achiev-
ing norm-equivalence may not be trivial, these principles are capable of
recovering all essential advantages of a Rayleigh-Ritz scheme.

A third pattern in the transformation occurs when norm-equivalence
is not an option due to, e.g., the complexity of the required norms. An
alternative then would be a simpler DLS principle for which

the discrete “energy” balance represents a mathematically cor-
rect relation between data and solution only asymptotically and
involves explicit dependence on grid-size parameters.

We call such DLS principles and methods quasi-norm-equivalent. Depen-
dence of the energy balance on the grid-size is the price that must be paid
to satisfy the practicality constraint and it may or may not have some neg-
ative effects on the resulting method.

A fourth pattern in the transformation occurs when the mathematical
structure of the CLS principle is completely disregarded resulting in a non-
equivalent DLS principle for which

the discrete “energy” balance does not represent a mathematically
correct relation between data and solution.

These principles create an “energy” imbalance relation in which data norms
are bounded from below and above by different solution norms.

Except for the conforming DLS principle, all other transformations com-
mit various variational crimes against the ideal CLS principle. However,
departure from the ideal, mathematically correct setting does not automat-
ically lead to the same disastrous results as say, violation of the inf-sup
condition in the mixed method. In fact, even non-equivalent methods rarely
fail in an obvious manner and their solutions are quite often good. This
truly remarkable feature of least-squares principles is owed to their roots in
inner product projections. This makes any least-squares method, including
methods with substantial deviations from the mathematically correct set-
ting, extremely robust and considerably less susceptible to variational crimes
compared to other schemes.

5.1 The abstract problem

Throughout this chapter, L denotes a linear differential operator that acts
on functions defined on some bounded, open region Ω ⊂ Rn and R denotes
a linear operator which is applied to functions defined on the boundary Γ
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of Ω. Both L and R may depend on the spatial variable x. We consider an
abstract boundary value problem

Lu = f in Ω (5.1)
Ru = g on Γ , (5.2)

where f and g denote data functions. Concerning (5.1)-(5.2), we make the
following assumptions.

A.1. There exist Hilbert spaces X = X(Ω), Y = Y (Ω), and Z = Z(Γ)1 such
that the mapping u 7→ (Lu,Ru) is a homeomorphism X 7→ Y × Z.

A.2. The operator (Lu,Ru) is of Fredholm type, i.e., it has a closed range
and both the kernel and the co-range are finite dimensional.

These assumptions are sufficiently general to include a wide range of par-
tial differential equation problems. For example, A.1–A.2 are valid for
differential operators that are elliptic in the sense of Agmon, Douglis, and
Nirenberg; see [11]. We will consider least-squares methods for such PDE’s
in the next chapter.

The second hypothesis allows us to disregard the case of (5.1)–(5.2) pos-
sessing multiple solutions. Indeed, if (L,R) has a nontrivial kernel, then
according to A.2, it must be finite dimensional. Consequently, (L,R) can
be augmented by a finite number of constraints2 in such a way that (5.1)–
(5.2) always has a unique solution.

An important consequence of A.1–A.2 is the existence of two positive
constants C1 and C2 whose values are independent of u and such that

C2‖u‖X ≤ ‖Lu‖Y + ‖Ru‖Z ≤ C1‖u‖X . (5.3)

The inequalities in (5.3) describe a relation between the solution and data
of a boundary value problem that is fundamental to least-squares princi-
ples. It defines the proper balance between the solution “energy” and the
residual “energy.” Note that for any given partial differential equation prob-
lem, there may exist many combinations of data and solution spaces for
which the problem is well posed and, in particular, for which (5.3) holds.

1The symbols ‖ · ‖X and (·, ·)X will denote the norm and inner product, respectively,
on the space X; analogous notations will be used for the spaces Y and Z.

2One example is given by the zero mean constraint
R
Ω

p dΩ = 0 which is added to
the Stokes equations to ensure the uniqueness of the pressure. A similar constraint can
be added to a pure Neumann problem for the Poisson equation which also has a one
dimensional null-space consisting of all constant functions.
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One example is given by differential operators which have complete sets of
homeomorphisms; see [13] and [14]. For such operators, energy bounds such
as (5.3) hold on scales of Hilbert spaces, i.e., collections of spaces Xq(Ω),
Yq(Ω), and Zq(Γ) parametrized by an integer parameter q; see [8] or [12].
Then, every value of q gives rise to a valid a priori estimate for the partial
differential equation problem.

5.2 Continuous least-squares principles

The continuous least-squares principle for (5.1)-(5.2) stems directly from the
solution-data balance defined by (5.3). The data spaces Y and Z provide the
norms for measuring the “energy” of the residuals while the solution space
X serves as a trial space for candidate minimizers of the “energy” functional.
Specifically, we define the artificial, quadratic, convex least-squares “energy”
functional

J(u; f ,g) =
1
2

(
‖Lu− f‖2

Y + ‖Ru− g‖2
Z

)
, (5.4)

and the continuous least-squares principle for the problem (5.4):

seek u ∈ X such that J(u; f ,g) ≤ J(v; f ,g) ∀v ∈ X . (5.5)

Whenever the data is identically zero, we will simply write J(u) instead of
J(u; 0, 0).

Let us now show that the continuous least-squares principle (5.5) is well
posed and that the unique minimizer of (5.4) coincides with the unique
solution u ∈ X of (5.1)–(5.2).

Theorem 1 Assume that A.1 and A.2 hold. Then,

1. the functional (5.4) is norm-equivalent in the sense that

1
4
C2

2‖u‖2
X ≤ J(u) ≤ 1

2
C2

1‖u‖2
X ∀u ∈ X ; (5.6)

2. there exists a unique minimizer u ∈ X of (5.4); moreover, the unique
minimizer u depends continuously on the data, i.e., u satisfies

‖u‖X ≤ C (‖f‖Y + ‖g‖Z) , (5.7)

where C is a constant whose value is independent of f , g, and u;

3. u is the unique minimizer of (5.4) if and only if u is the unique solution
of (5.1)–(5.2).
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Proof. To show 1, it suffices to note that

J(u) =
1
2

(
‖Lu‖2

X + ‖Ru‖2
Z

)
so that the norm-equivalence (5.6) follows from (5.3).

To prove 2, standard techniques from the calculus of variations can be
used to show that all minimizers u of (5.4) necessarily satisfy the Euler-
Lagrange equation

δJ(u) = lim
ε→0

dJ(u + εv)
dε

= 0 ∀v ∈ X .

A simple calculation shows that this equation is identical with the variational
problem

seek u ∈ X such that Q(u;v) = F (v) ∀v ∈ X , (5.8)

where the bilinear form Q(·; ·) and the linear functional F (·) are given by

Q(u;v) = (Lu,Lv)Y + (Ru,Rv)Z (5.9)

and
F (v) = (f ,Lv)Y + (g,Rv)Z , (5.10)

respectively. From the lower bound in (5.3), we obtain

Q(u;u) = ‖Lu‖2
X + ‖Ru‖2

Z ≥
1
2
C2

2‖u‖2
X

while the Cauchy inequality and the upper bound in in (5.3) yield

Q(u;v) ≤
(
‖Lu‖Y + ‖Ru‖Z

)(
‖Lv‖Y + ‖Rv‖Z

)
≤ C2

1‖u‖X‖v‖X ,

i.e., Q(·; ·) is a continuous and coercive bilinear form on X×X. Again, using
Cauchy’s inequality and the upper bound in (5.3), it is easy to see that

F (v) ≤
(
‖Lv‖Y + ‖Rv‖Z

)(
‖f‖Y + ‖g‖Z

)
≤ C1‖v‖X(‖f‖Y + ‖g‖Z) ,

i.e., F (v) is a bounded linear functional on X and

‖F‖ ≤ C1(‖f‖Y + ‖g‖Z).
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As a result, the existence and uniqueness of a minimizer u that solves (5.8)
follows from the Riesz Representation Theorem. Finally, the coercivity of
the bilinear form Q(·; ·) along with the continuity of F (·) implies

1
2
C2

2‖u‖2
X ≤ Q(u;u) = F (u) ≤ C1‖u‖X(‖f‖Y + ‖g‖Z)

so that
‖u‖X ≤ 2C1

C2
2

(
‖f‖Y + ‖g‖Z

)
which proves (5.7).

To show the last assertion, let u1 and u2 denote the minimizer of (5.8)
and a solution of (5.1)–(5.2), respectively. Since u1 is the minimizer and
since u2 causes the residuals of (5.1)–(5.2) to vanish,

J(u1; f ,g) ≤ J(u2; f ,g) = 0 .

As a result,

C2‖u1 − u2‖X ≤ ‖L(u1 − u2)‖Y + ‖R(u1 − u2)‖Z

= ‖L(u1)− f‖Y + ‖R(u1)− g‖Z = 2J(u1; f ,g)1/2 = 0 ,

i.e., u1 = u2. 2

Theorem 1 describes a Rayleigh-Ritz principle, albeit for an externally
defined, artificial, “energy” functional. The “energy” inner product for this
principle is Q(·; ·), while |||u|||2 = Q(u;u) = 2J(u) is the “energy” norm.
Thus, it is clear that we have succeeded in emulating the Rayleigh-Ritz
principle for any given partial differential equation problem and under very
general assumptions. In other words,

we have established a mathematical framework which allows us
to take an arbitrary well-posed partial differential equation prob-
lem and replace it by an equivalent, well-posed, unconstrained
minimization problem. This framework is completely determined
by the pair {X, J(·; ·, ·)}. The set of all such pairs forms the class
of continuous least-squares (CLS) principles.

The least-squares problem (5.5) is equivalent to the original equations
(5.1)–(5.2) in the sense that their solutions belonging to the spaceX coincide
– each minimizer of (5.4) solves the differential equations and vice versa.
However, it is important to remember that, as a rule, the variational problem
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(5.8) is not a standard, e.g., Galerkin, weak form of (5.1)–(5.2). For example,
if L is such that the Green’s formula

(u,Lv)Y− < L∗u,v >Ω=< R∗u,v >Γ (5.11)

holds, where < ·, · > denotes an appropriate duality pairing, then smooth
minimizers of (5.4) are not directly solutions of (5.1)-(5.2), instead they solve
the strong problem (compare with (4.4)-(4.5) in §4.1)

L∗Lv = L∗f in Ω (5.12)

augmented with the essential condition (5.2) and the natural condition

R∗Lu = R∗f . (5.13)

Equations (5.12), (5.2) and (5.13) form the boundary value problem for
which the least-squares functional (5.4) is the naturally occurring convex,
quadratic, energy functional providing the Rayleigh-Ritz setting. In other
words, the strong problem (5.12), (5.2) and (5.13) is the differential equa-
tion whose weak Galerkin form coincides with the least-squares variational
problem (5.8). Thus, it is conceivable to develop a least-squares principle
for (5.1)-(5.2) by immersion of these equations into the appropriate strong
least-squares problem followed by a standard Galerkin procedure. Of course,
this is hardly the most efficient or lucid method.

Finally, we draw attention to the fact that L∗ coincides with the usual
dual only if Y ≡ L2(Ω). In general, the problem (5.12) can be determined
from (5.1)-(5.2) through differentiation and linear combinations that account
for the norm structure of Y .

5.3 Discrete least-squares principles

Given a pair {X, J(·)} consider another pair {Xh, Jh(·)} consisting of

1. a discrete, e.g., finite element, spaceXh parametrized by a “mesh-size”
parameter h and which approximates X in a sense to be specified later;

2. a quadratic functional Jh(·; ·, ·) : Xh × Y × Z 7→ R.

The pair {Xh, Jh(·)} gives rise to a discrete least-squares principle:

seek uh in Xh such that Jh(uh; f ,g) ≤ J(vh; f ,g) ∀vh ∈ Xh . (5.14)

Since the objective is to use (5.14) to determine approximate solutions of
(5.1)–(5.2), it is necessary to make additional assumptions concerning the
pair {Xh, Jh(·)} that will connect the two problems.
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D.1 The least-squares functional is consistent in the sense that for all smooth
data f and g and all smooth solutions u of (5.1)–(5.2), Jh(u; f ,g) = 0.

D.2 The least-squares functional is positive, i.e.,

Jh(vh; 0, 0) > 0 ∀ 0 6= vh ∈ Xh .

The positivity assumption D.2 implies that

||| · |||h ≡ J(·; 0, 0)1/2 : Xh 7→ R (5.15)

defines a norm on Xh which we refer to as the discrete energy norm. Since
Xh is finite dimensional, we can also infer the existence of an inner product

((·, ·))h : Xh ×Xh 7→ R, (5.16)

called discrete energy inner product such that

|||vh|||2h = ((vh,vh))h. (5.17)

Let us show that D.1 and D.2 are by themselves sufficient to solve (5.14)
and obtain “optimal” approximations.

Theorem 2 Assume that D.1 and D.2 hold for the pair {Xh, J(·)} and let
u denote a smooth solution of (5.1)–(5.2). Then,

1. the problem (5.14) has a unique minimizer uh ∈ Xh;

2. uh is the orthogonal projection of u with respect to the discrete energy
inner product (5.16).

Proof. From the consistency assumption D.2 and the (5.17), it is not
hard to see that the Euler-Lagrange equation for (5.14) is

seek uh in Xh such that

Bh(uh;vh) = F h(vh) for all vh ∈ Xh , (5.18)

where
Bh(·; ·) = ((·, ·))h and F h(·) = ((u, ·))h .

Let {φhi } denote a basis for Xh so that uh =
∑N

i=1 Uiφ
h
i . It is obvious that

(5.18) is a linear system of algebraic equations for the unknown coefficient
vector ~U . The matrix and the right hand side of this system are

Aij = ((φhj , φ
h
i ))h and Fi = ((u, φhi ))h.
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Clearly A is symmetric and from the positivity assumption we conclude that
A is also positive definite. As a result, the system A~U = ~F has a unique
solution.

To prove the second part it suffices to notice that (5.18) can be recast as

((uh − u,vh))h = 0 for all vh ∈ Xh.

from where it is immediately obvious that uh is orthogonal projection of u
relative to the energy inner product. 2

Corollary 1 The least-squares solution uh minimizes the discrete energy
norm error, that is

|||u− uh|||h = inf
vh∈Xh

|||u− vh|||h. (5.19)

Theorem 2 shows that a least-squares principle is capable of producing
reasonable results under a very limited set of assumptions. This explains
the remarkable robustness of least-squares methods – almost any sensible
pair {Xh, Jh(·)} will satisfy both D.1-D.2, while pairs that violate one or
both conditions are very rare. They are so rare that in fact, one would have
to deliberately construct such a discrete least-squares principle! Another
remarkable observation is that neither D.1 nor D.2 appeal in any way to
a mathematically correct CLS principle. Does this mean that we can com-
pletely ignore CLS and not bother with finding proper function spaces or
norms and just proceed directly to find a pair {Xh, Jh(·)} satisfying D.1 and
D.2 which, in view of (5.19), appears to be enough to obtain good results?
The answer, of course, is no and the reason is that so far we have avoided
addressing a key issue, namely the asymptotic behavior of the method, in-
cluding the convergence of uh to u.

Let us now explain why violations of the correct energy balance are less
transparent for moderate values of h and why they will amplify as h becomes
smaller, e.g., when the grid is refined. Assume for a moment that the setting
for the continuous least-squares principle is such that both the continuous
energy norm ||| · ||| and the natural norm ‖ · ‖X are meaningful for uh ∈ Xh

so that their restrictions to Xh are well-defined norms on this space. The
positivity assumption D.2 means that ||| · |||h is another norm on this finite-
dimensional space and as such, it must be equivalent to the restrictions of
||| · ||| and ‖ ·‖X . As a result, for every fixed h > 0, there are constants γ1(h)
and γ2(h) such that

γ1(h)‖uh‖X ≤ |||uh|||h ≤ γ2(h)‖uh‖X ∀uh ∈ Xh, (5.20)
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i.e., a version of the correct energy balance holds for any fixed h. Likewise,
if ~U denotes the coefficient vector corresponding to Uh it is not hard to see
that

δ1(h)~UTM~U ≤ ~UTA~U ≤ δ2(h)~UTM~U (5.21)

for some other constants δ1(h) and δ2(h), and where M denotes the Gramm
matrix of the finite element space bases relative to the inner product ‖ · ‖X .
However, the asymptotic behavior of these constants depends entirely on
the relation between the two energy norms and neither D.1 nor D.2 can
control the growth (or decay) of γi(h) and δi(h). On the other hand, it
is the asymptotic of γi(h) that governs the convergence of least-squares
approximations and it is the asymptotic of δi(h) that governs the matrix
conditioning. These constants measure the deviation of the discrete least-
squares principle from the ideal setting defined by a CLS principle. As
the deviation from CLS principle grows, so does the dependence of these
constants on h and the quality of least-squares approximations and algebraic
systems deteriorates with h. Therefore, asymptotic behavior of discrete
least-squares principles depends on the

equivalence relation between the discrete energy norm and the
continuous energy norm.

At the beginning of this chapter we sketched four possible relations between
the continuous and discrete least-squares principles. It should be clear by
now that each one of these relations gives rise to a bound similar to (5.20)
and that the asymptotic behavior of γ1 and γ2 will depend on how well the
DLSP reproduces the correct energy balance (5.3).

Conforming DLSP are simply restrictions of a given CLSP. In this case
the pair {Xh, Jh(·)} is identified with a subspace Xh of X and Jh(·) = J(·).
As a result, (5.20) is a restriction of the energy balance (5.3) to Xh which
means that γ1(h) and γ2(h) are independent of h; in fact they coincide with
the constants C1 and C2 from (5.3).

Norm-equivalent DLSP are identified with pairs {Xh, Jh(·)} for which
Xh ⊂ X and (5.20) holds with γ1 and γ2 independent of h. In general, for
such methods Jh(·) 6= J(·), which means that (5.20) does not represent a
restriction of (5.3). Nevertheless, norm-equivalent methods do recover all
advantages of a Rayleigh-Ritz setting.

Quasi-norm-equivalent DLSP are identified with pairs {Xh, Jh(·)} for
which Xh ⊂ X but (5.20) holds with γ1 and γ2 which depend on the mesh
parameter h. These methods are capable of producing optimal convergence
rates, however, the dependence on h in the equivalence bound leads to higher
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condition numbers and/or lack of spectral equivalence with the natural inner
product on X ×X.

And lastly, non-equivalent DLSP are identified with pairs {Xh, Jh(·)} for
which Xh is not necessarily a subspace of X and Jh(·) 6= J(·). As a result, an
equivalence relation like (5.20) exists, but it is stated in terms of different3

spaces for the lower and upper bounds. Thus, nothing much can be said
about optimality of the convergence rates and the spectral equivalence of
the algebraic problems.

In the next chapter we specialize this framework to the important class
of differential operators that are elliptic in the sense of Agmon-Douglis and
Nirenberg. Among the members of this class are the various forms of the
Stokes operator, div-curl operators with the appropriate boundary condi-
tions and many other examples of practically important PDE’s.

3If Xh satisfies an inverse inequality these bounds may be converted to bounds in terms
of the same function space. This necessarily will introduce dependence on h in the lower
and/or upper equivalence constants.



Chapter 6

Least-squares methods for
ADN systems

Theorem 2 shows that least-squares principles can lead to a sensible method
under very limited set of assumptions. This, of course is one of the great
appeals of least-squares methodology. However, if a least-squares method is
based only on the expectation that hypothesis D.1-D.2 hold, nothing much
can be said beyond the fact that approximate solutions are projections of
the exact solution with respect to the discrete inner product (5.16) and that
the least-squares solution minimizes the error as measured by the discrete
energy norm (5.15). In particular, no specific information can be obtained
about asymptotic convergence rates. Furthermore, without knowing the
asymptotic behavior of the “constants” in (5.21) it is hard to develop efficient
preconditioners for the solution of the least-squares algebraic systems.

These issues become more tractable when the abstract development of
least-squares methods is carried in the context of a particular class of differ-
ential equations. This is precisely the purpose of this chapter where we focus
on first-order differential operators that are elliptic in the sense of Agmon,
Douglis and Nirenberg; see [11]. The ADN theory is, perhaps, the most pow-
erful and universal tool for the analysis of elliptic boundary value problems.
It has been successfully used in the context of least-squares methods in [46],
[48], [56], [58], and [75]. For elliptic problems in the plane a parallel theory
exists; see [10], which also has been used in the development of least-squares
methods. For examples the reader can consult Wendland’s book [10] and
the papers [79], [80], among others.

The least-squares theory developed in this chapter stands apart from the
approaches cited above in several aspects. First, it includes a very broad
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class of problems, namely ADN elliptic systems. At the same time it is
focused on first-order systems because these are the problems of practical
interest in least-squares. Lastly, our treatment highlights the idea of the
least-squares method as realization of a mathematically ideal Continuous
Least Squares Principle through a practical Discrete Least Squares principle.

We begin the chapter with a brief summary of ADN elliptic theory.
In the next section we use this theory to show that both A.1 and A.2
hold for ADN systems. (Because of the rather technical nature of ADN
theory, specific details of its application are collected in Appendix A.) This
fact immediately leads us to identification of all CLSP for a given ADN
elliptic operator. Section 6.3 briefly discusses transformation of general ADN
operator into an equivalent first-order system. Then, in §6.4 we show that
first-order ADN systems give rise to two basic classes of CLS principles -
one associated with homogeneous elliptic operators, and one associated with
non-homogeneous elliptic operators.

The core of this chapter is section 6.5 where we formulate discrete least-
squares principles for the two types of first-order ADN operators. In partic-
ular, we highlight the often forgotten fact that

a first-order system is not necessarily homogeneous elliptic!

The most important consequence of this fact is that a mathematically well-
posed continuous least-squares principle for a first-order system may still
be impractical, thus transformation to a DLSP may be required even for
first-order systems.

6.1 ADN differential operators

We consider systems of partial differential equations of the form (5.1)-(5.2),
that is

Lu = f in Ω

Ru = g on Γ.

Here u = (u1, u2, . . . , uN ) is a vector of dependent variables,

D = (∂/∂x1, . . . , ∂/∂xn) = (∂1, . . . , ∂n)

denotes a differentiation operator, and L = L(x, D) = Lij(x, D), i, j =
1, . . . , N . Likewise, the boundary operator has the form R = R(x, D) =
Rlj(x, D), l = 1, . . . ,m, j = 1, . . . , N . Lastly, it is assumed that each
Lij(x, ξ) and Rij(x, ξ) is a polynomial in ξ. In what follows we restrict
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our attention to differential operators that are elliptic in the sense of the
following definition, due to Agmon, Douglis and Nirenberg; see [11]:

Definition 1 The system (5.1) is ADN-elliptic if there exist integer weights
{si} and {tj}, for the equations and the unknowns, respectively, such that

1. degLij(x, ξ) ≤ si + tj;

2. Lij ≡ 0 whenever si + tj < 0;

3. detLPij(x, ξ) 6= 0 for all real ξ 6= 0;

where the principal part LP of L is defined as all terms Lij for which
degLij(x, ξ) = si + tj.

Although this definition may seem a little bit artificial, it can be shown that
for nondegenerate systems one can always find si and tj so that the principal
part LP does not vanish identically; see [15]. For such systems the degree
r of the determinant L(x, ξ) = detL(x, ξ) equals the maximum degree R of
the terms forming L(x, ξ) (in general r ≤ R). Furthermore, Volevich [15]
has shown that Definition 1 is equivalent to ellipticity in the following sense:
r = R and ξ ≡ 0 is the only real root of L′(x, ξ) = 0, where L′ denotes the
part of order r of L.

The orders of Rlj will also depend on two sets of integer weights: the
unknown’s weights {tj} already defined for L, and a new set {rl} where each
rl is attached to the lth condition in (5.2). As before, it will be required
that

degRlj(x, ξ) ≤ rl + tj ,

with the understanding that Rlj ≡ 0 when rl+ tj < 0. Finally, the principal
part RP of the boundary operator will be defined as all terms Rlj such that
degRlj(x, ξ) = rl + tj . The three sets of indices can always be normalized
in such a way that si ≤ 0, rl ≤ 0 and tj ≥ 0. However, the sets of indices
may not be unique, even with that normalization, i.e., there are examples
of operators which possess more than one principal parts and still satisfy
Definition 1.

An important subset of ADN elliptic systems is the class of Petrovski
systems; see [14].

Definition 2 A system is elliptic in the sense of Petrovski if it is elliptic
in the sense of ADN and s1 = . . . = sN = 0. If in addition t1 = . . . = tN ,
the system is called homogeneous elliptic.
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One additional condition, which is satisfied for all elliptic systems in three
or more space dimensions but must be assumed in two-dimensions is the
supplementary condition of [11].

Definition 3 (Supplementary Condition on L) detLP (x, ξ) is of even
degree 2m with respect to ξ. For every pair of linearly independent vectors
ξ and ξ′, the polynomial detLp(x, ξ + τξ′) in the complex variable τ has
exactly m roots with positive imaginary part.

When an elliptic system satisfies the Supplementary condition it is also called
regularly elliptic; see [14]. Our final assumption concerning the system (5.1)
is that L is uniformly elliptic in the sense that there exists a positive constant
C such that

C−1|ξ|2m ≤ |detLP (x, ξ)| ≤ C|ξ|2m. (6.1)

When boundary conditions (5.2) are attached to the operator L, resulting
boundary value problem may or may not be well-posed. A well-posed prob-
lem will result only if R “complements” L in a proper way. A necessary
and sufficient condition for this is given by an algebraic criterion involving
the principal parts LP and RP . This criterion, known as the complementing
condition is due to Agmon, Douglis and Nirenberg, [11].

To state this condition let τ+
k (x, ξ) denote the m roots of detLP (x, ξ +

τξ′) having positive imaginary part, n denote the normal to Γ;

M+(x, ξ, τ) =
m∏
k=1

(
τ − τ+

k (ξ)
)
,

and, lastly, let L′ denote the adjoint matrix to LP . Then, we have the
following definition [11].

Definition 4 ( Complementing Condition) For any point x ∈ Γ and
any real, non-zero vector ξ tangent to Γ at x, regard M+(x, ξ, τ) and the
elements of the matrix

N∑
j=1

RP
lj(x, ξ + τn)L′jk(x, ξ + τn)

as polynomials in τ . The operators L and R satisfy the complementing
condition if the rows of the latter matrix are linearly independent modulo
M+(ξ, τ), i.e.,

m∑
l=1

Cl

N∑
j=1

RP
lj(x, ξ + τn)L′jk(x, ξ + τn) ≡ 0 (modM+) (6.2)
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if and only if the constants Cl all vanish.

For simplicity, in what follows the boundary value problem (5.1)-(5.2) will
be called elliptic if:

1. L is elliptic in the sense of ADN;

2. L is regularly elliptic;

3. L is uniformly elliptic;

4. R satisfies the complementing condition.

With the problem (5.1)-(5.2) we associate the function spaces

Xq =
N∏
j=1

Hq+tj (Ω); Yq =
N∏
i=1

Hq−si(Ω); Zq =
m∏
l=1

Hq−rl−1/2(Γ). (6.3)

We now proceed to show that ADN elliptic systems satisfy hypotheses A.1–
A.2 of §5.1. The first hypothesis follows from a general result due to Agmon,
Douglis and Nirenberg [11]. In what follows we shall skip the reference to x
and D and simply write L and R.

Theorem 3 Let t′ = max tj, q ≥ d = max(0,max rl + 1) and assume that
Ω is a bounded domain of class Cq+t

′
. Furthermore, assume that the coeffi-

cients of L are of class Cq−si(Ω̄) and that the coefficients of R are of class
Cq−rl(Γ). If (5.1)-(5.2) is elliptic and f ∈ Yq, g ∈ Zq then

1. Every solution u ∈ Xd is in fact in Xq.

2. There is a positive constant C, independent of u, f and g, such that,
for every solution u ∈ Xq

N∑
j=1

‖uj‖q+tj ,Ω ≤ C

 N∑
i=1

‖fi‖q−si,Ω +
m∑
l=1

‖gl‖q−rl−1/2,Γ +
N∑
j=1

‖uj‖0,Ω

 .

(6.4)
Moreover, if the problem (5.1)-(5.2) has a unique solution, then the L2-norm
on the right-hand side of (6.4) can be omitted. 2

Clearly, A.1 is implied by (6.4). Furthermore, it can be shown that ADN
elliptic operators are of Fredholm type; see [13], [14], [10], i.e., their range is
closed and both the kernel and the co-range are finite dimensional. There-
fore, A.2 is also satisfied and (L,R) can be augmented by a finite number of
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constraints so that the problem (5.1)-(5.2) always has a unique solution. In
addition to the uniqueness, it will be also assumed that (6.4) remains valid
for q < 0. This assumption, which amounts to the existence of complete sets
of homeomorphisms for (5.1)-(5.2), is known to hold for self-adjoint ADN
operators, or Petrovski systems; see [13]-[14]. With these assumptions (6.4)
can be restated as follows: for all smooth functions u in Ω and all integers q

‖u‖Xq ≤ C
(
‖Lu‖Yq + ‖Ru‖Zq

)
. (6.5)

6.2 Continuous least-squares principles for ADN
operators

From §5.2 we know that the proper “energy” balance (5.3) for the PDE
can be determined through a priori bounds, after which the proper least-
squares functional can be easily identified according to (5.4). For ADN
systems Theorem 3 provides us with precisely that tool in the form of the
estimate (6.5). As a result, for any elliptic ADN system, the artificial energy
functional that provides a mathematically correct measure of the residual
“energy” is given by

J(u; f ,g) = ‖Lu− f‖2
Yq

+ ‖Ru− g‖2
Zq
. (6.6)

The functional (6.6) is norm-equivalent in the sense that

C−1‖u‖2
Xq

≤ ‖Lu‖2
Yq

+ ‖Ru‖2
Zq

= J(u;0,0). (6.7)

This functional also gives rise to a mathematically well-posed Continuous
Least-Squares Principle:

min
u∈Xq

J(u; f ,g). (6.8)

This principle provides the setting of (5.5) for ADN systems, while the
analogue of (5.8) is

seek u ∈ Xq such that Q(u;v) = F (v) ∀v ∈ Xq , (6.9)

where now
Q(u;v) = (Lu,Lv)Yq+ < Ru,Rv >Zq

and
F (v) = (f ,Lv)Yq+ < g,Rv >Zq

Like in the abstract case, norm-equivalence of the artificial energy func-
tional (6.6) implies that Q(·; ·) defines an equivalent “energy” inner product
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on Xq × Xq. Thus, as long as (6.9) is discretized using a finite element
subspace Xh of Xq, all attractive features of Rayleigh-Ritz setting (non-
restrictive choice of finite element space, symmetric and positive definite al-
gebraic systems, quasioptimal error estimates) of energy minimization prin-
ciples would be formally recovered by the least-squares method. In addition,
equivalence of Q(·; ·) and the inner product on Xq ×Xq may be used in the
design of preconditioners for the least-squares algebraic system. More pre-
cisely, if Ah = Q(φi;φj) and Kh = (φi, φj)Xq , then Ah and Kh are spectrally
equivalent in the sense that

C−1ξTKhξ ≤ ξTAhξ ≤ CξTKhξ, ∀ξ ∈ Rn

Thus, Ah can be preconditioned by any matrix that is spectrally equivalent
with Kh.

However, the CLSP described above may fail to be practical in the sense
discussed in §4.4.1. Let us recall that to deem a least-squares method prac-
tical we require that

• the discrete system can be obtained without difficulty, or at least, with
no more difficulty than for a Galerkin method.

• this system should have a condition number comparable to the condi-
tion number of the system in the Galerkin method;

• discretization should be accomplished using standard, easy to use finite
element spaces.

The first condition will be violated if the least-squares functional involves,
fractional or negative order Sobolev space norms because such norms are
not computable. The second and third conditions will be violated if for
some si and tj we have that si + tj ≥ 2. In this case the term ‖Lijuj −
fi‖q−si will effectively involve second, or higher order derivatives, i.e., it
cannot be discretized using standard C0 spaces. In what follows we focus
on the development of practical least-squares methods when the “energy”
functional does not involve fractional order trace norms. Such norms arise
whenever the essential boundary conditions are enforced weakly through
the least-squares minimization process. For examples of such least-squares
methods we refer to [46], [10] and [105], while here, for simplicity, we restrict
our attention to the case of homogeneous boundary conditions which are
imposed on the space Xq.

When the differential operator L involves second or higher order deriva-
tives, a standard approach in modern least-squares methods has been to
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transform (5.1)-(5.2) into an equivalent first-order system. This step is mo-
tivated by the observation that ‖Lijuj − fi‖2

0 can be discretized by merely
continuous finite element spaces, provided the order of Lij does not exceed
one. We encountered some specific examples of this idea in §4.4. In the
next section we discuss the transformation process in more general terms,
specialize (6.5) to the case of first-order systems, and derive norm-equivalent
functionals for these systems.

6.3 First-order ADN systems

Any ADN-elliptic system of order higher than one can be transformed into
an equivalent first-order system which remains elliptic in the same sense (this
is not true if the usual definition of ellipticity, involving only differentiated
terms, is used; see the example below). This transformation can be effected
through the following process; see [11]. First, all variables are divided into
two sets according to their indices: a set {uk′} containing all variables for
which tj > 1 and a set {uk′′} of all variables for which tj ≤ 1. Then, the
new variables are introduced as

uk′,j = ∂juk′

while at the same time the equations defining these variables are appended
to the differential operator. The original operator L itself also undergoes
a transformation. All terms in which u′k is not differentiated remain un-
changed. A term in which u′k is differentiated is substituted according to
the rule

Dα(∂juk′) 7→ Dα(uk′,j).

Although rewriting of L is not unique it can be shown; see [11], that the new
system is elliptic in the sense of ADN and that max tj ≤ 2, min si ≥ −1.
The original boundary conditions (5.2) are transformed in a similar fashion
into equivalent boundary conditions for the first-order system. Again, this
process is not unique and can be accomplished in several possible ways; the
important fact is that if the Complementing Condition was satisfied by (5.2),
then it will be also satisfied by the new boundary conditions; see [11]. As
a result, we are guaranteed that the new operator augmented with the new
boundary conditions (denoted again by L and R, respectively) is well-posed,
so that (6.5) remains valid.

Example 1 (Laplace operator.) In 2D, the second order problem (2.6)
can be transformed into a first-order system with the help of the new depen-
dent variables u1 = φx and u2 = φy. The first-order equation is the familiar
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system (2.21) from §2.2:

∂u1

∂x
+
∂u2

∂y
= f

∂φ

∂x
− u1 = 0

∂φ

∂y
− u2 = 0

If the principal part of (2.21) is defined by taking only the highest order
terms then

detLP (x, ξ) =

∣∣∣∣∣∣
0 ξ1 ξ2
ξ1 0 0
ξ2 0 0

∣∣∣∣∣∣ ≡ 0.

However, (2.21) is elliptic in the sense of Definition 1. Indeed, with the
choice t1 = 2, t2 = t3 = 1 and s1 = 0, s2 = s3 = −1 the determinant of the
principal part is

detLP (x, ξ) =

∣∣∣∣∣∣
0 ξ1 ξ2
ξ1 −1 0
ξ2 0 −1

∣∣∣∣∣∣ = |ξ|2.

Our next example concerns an important first-order form of the Stokes
problem (2.17) which will be considered in detail in §7.1.1 of Chapter 7.
This example shows the non-uniqueness of the ADN indices, i.e., the possi-
bility that a differential operator may posses multiple principal parts! Subse-
quently we will see that this fact has a significant impact on the least-squares
finite element method.

Example 2 (Velocity-Vorticity-Pressure Stokes system.) We con-
sider the Stokes equations (2.17) in 2D. The second order term involves the
velocity variable u = (u1, u2). In principle we could have introduced all four
derivatives u1,x, u1,y, u2,x and u2,y as new dependent variables. Instead we
choose to introduce their linear combination

ω =
∂u2

∂x
− ∂u1

∂y

as the sole new variable. One reason is that ω has a physical meaning - this
is the vorticity “vector” of u. Another reason is that we increase the size
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of the system only by one equation and one variable. It can be shown that
(2.17) transforms into the first-order system

∂ω

∂y
+
∂p

∂x
= f1

−∂ω

∂x
+
∂p

∂y
= f2

∂u2

∂x
− ∂u1

∂y
− ω = 0 (6.10)

∂u1

∂x
+
∂u2

∂y
= 0

Let us assume that the unknowns are ordered as (ω, p, u1, u2). If

t1 = . . . = t4 = 1 and s1 = . . . = s4 = 0

then the determinant of the principal part is

detLp(x, ξ) =

∣∣∣∣∣∣∣∣
ξ2 ξ1 0 0

−ξ1 ξ2 0 0
0 0 −ξ2 ξ1
0 0 ξ1 ξ2

∣∣∣∣∣∣∣∣ = −|ξ|4 .

However, if t1 = t2 = 1, t3 = t4 = 2 and s1 = s2 = 0, s3 = s4 = −1,

detLp(x, ξ) =

∣∣∣∣∣∣∣∣
ξ2 ξ1 0 0

−ξ1 ξ2 0 0
−1 0 −ξ2 ξ1

0 0 ξ1 ξ2

∣∣∣∣∣∣∣∣ = −|ξ|4 ,

that is system (6.10) satisfies Definition 1 with two different sets of weights.

6.4 Continuous least-squares principles for first-
order systems

Let us first assume that the (first-order) problem (5.1)-(5.2) is elliptic in the
sense of Petrovski. Then si = 0 for all i = 1, . . . , N and therefore tj = 1
for all j = 1, . . . , N . Consequently, assuming that Xq is restricted by the
homogeneous boundary condition Ru = 0, estimate (6.5) specializes to

‖u‖Xq =
N∑
j=1

‖uj‖q+1 ≤ C

N∑
i=1

‖
N∑
j=1

Lijuj‖q (6.11)
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If (5.1)-(5.2) is not Petrovski, then there will be at least one equation index
si = −1. Since all Lij are at most of order one, there will be at least one
unknowns index tj = 2. Without loss of generality we can assume that for
some k and l

s1 = . . . = sk = 0; sk+1 = . . . = sN = −1, (6.12)

and
t1 = . . . = tl = 1; tl+1 = . . . = tN = 2, (6.13)

respectively. As a result, for non-Petrovski first-order systems (6.5) special-
izes to

‖u‖Xq =
l∑

j=1

‖uj‖q+1 +
N∑

j=l+1

‖uj‖q+2

≤ C
( k∑
i=1

‖
N∑
j=1

Lijuj‖q +
N∑

i=k+1

‖
N∑
j=1

Lijuj‖q+1

)
(6.14)

To define the norm-equivalent functionals and the associated CLS principles
we further restrict the range of q to -1 and 0. For Petrovski systems the
choice q = 0 in (6.11) corresponds to the norm-equivalent functional

JP (u; f) =
N∑
i=1

‖
N∑
j=1

Lijuj − fi‖2
0, (6.15)

while for non-Petrovski systems the choices q = −1 or q = 0 in (6.14) yield
the two norm-equivalent functionals

J−1(u; f) =
k∑
i=1

‖
N∑
j=1

Lijuj − fi‖2
−1 +

N∑
i=k+1

‖
N∑
j=1

Lijuj − fi‖2
0 (6.16)

and

J0(u; f) =
k∑
i=1

‖
N∑
j=1

Lijuj − fi‖2
0 +

N∑
i=k+1

‖
N∑
j=1

Lijuj − fi‖2
1, (6.17)

respectively. Each one of these three functionals gives rise to CLS principle
in the manner outlined in §5.2.
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6.5 Discrete least-squares principles for first-order
systems

To discuss finite element methods based on the three functionals (6.15)-
(6.17) let Th denote a regular triangulation of the domain Ω into finite
elements. We consider spaces of continuous, piecewise polynomial functions
defined with respect to Th and denoted by Shd . It is assumed that for every
u ∈ Hd+1(Ω) there exists uh ∈ Shd with

‖u− uh‖0 + h‖u− uh‖1 ≤ Chd+1‖u‖d+1. (6.18)

For example, the space P1 (continuous, piecewise linear polynomials on tri-
angles) satisfies (6.18) with d = 1, while the space P2 (continuous, piecewise
quadratic polynomials on triangles) satisfies (6.18) with d = 2. We also
recall that for regular triangulations the Euclidean norm of the coefficient
vector of uh, denoted by |uh|, and the L2 norm of uh are related by the
inequality

C−1hM |uh| ≤ ‖uh‖0 ≤ ChM |uh| , (6.19)

where M denotes the dimension of Shd . We will also need the inverse in-
equality

‖uh‖1 ≤ Ch−1‖uh‖0 (6.20)

which holds for most standard finite element spaces on regular triangula-
tions; see [3].

All three mathematically correct functionals (6.15)-(6.17) are norm equiv-
alent, however, only (6.15) is practical in the sense discussed in §4.4. Func-
tional (6.16) contains negative order norms while (6.17) has terms with
tj − si = 2, i.e., their total order is two. The reason is that although L
involves only first-order terms, the problem (5.1)-(5.2) is not homogeneous
elliptic, and therefore, the components of u have different differentiability
properties. As a result, transformation to first-order systems alone may
not be sufficient to derive a practical least-squares method, unless the new
system also happens to be of Petrovski type. Therefore, for non-Petrovski
systems it is still necessary to effect a transition from the ideal CLSP to a
practical DLSP. This means that we must define alternative, discrete least-
squares functionals to replace (6.16) and (6.17).

6.5.1 Least-squares for Petrovski systems

Consider a first-order Petrovski system and the CLS principle

min
u∈X0

JP (u; f). (6.21)
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associated with the least-squares functional (6.15). The minimization space
in (6.21) is given by

X0 = {u |u ∈
N∏
j=1

H1(Ω); Ru = 0 on Γ},

and the Euler-Lagrange equation for (6.21) is

seek u ∈ X0 such that Q(u;v) = F (v) ∀v ∈ X0 , (6.22)

where now

Q(u;v) =
N∑
i=1

( N∑
j=1

Lijuj ,
N∑
j=1

Lijvj
)

0
and F (v) = (f ,

N∑
j=1

Lijvj)0.

The form in (6.22) involves only L2-inner products of first-order terms and
the space X0 is a product of H1(Ω) spaces. As a result, for first-order
Petrovski systems a practical least-squares method can be derived directly
from the CLS principle by choosing a finite element subspace Xh of X0

and setting Jh(·) = J(·). According to the terminology introduced in §5
we call the ensuing discrete least-squares principle {Xh, Jh(·)} conforming.
The next theorem shows that a least-squares method based on (6.21)-(6.22)
does indeed meet all criteria for practicality - discretization is accomplished
by standard C0 finite element spaces, approximations are quasi-optimal,
algebraic systems can be easily preconditioned and their condition numbers
are similar to those of a standard Galerkin method.

Theorem 4 Assume that (5.1)-(5.2) is a first-order Petrovski system and
that X0 is the space defined above. Furthermore, let

Xh = {uh |uh ∈
N∏
j=1

Shd , Ruh = 0 on Γ}

for some integer d ≥ 1 and assume that u ∈ Xq for some q ≥ 0. Then,

1. the least-squares variational problem (6.22) has a unique solution u ∈
X0 for any f ∈ Y0;

2. the discrete least-squares variational problem

seek uh ∈ Xh such that Q(uh;vh) = F (vh) ∀vh ∈ Xh , (6.23)
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has a unique solution uh such that

‖u− uh‖1 ≤ C inf
v∈Xh

‖u− vh‖1. (6.24)

and
‖u− uh‖1 ≤ Chd̃‖u‖d̃+1, d̃ = min{d, q}; (6.25)

3. the least-squares discretization matrix Ah defined by Ahij = Q(ξi; ξj) is
spectrally equivalent to the block diagonal matrix diag(D, . . . ,D) with

Dij = (φi, φj)1.

Here {ξi} and {φi} denote standard nodal bases for Xh and Shd , re-
spectively. Furthermore, cond(A) = O(h−2).

Proof. To prove 1. and 2. it suffices to show that Q(·; ·) is continuous
and coercive on X0 ×X0. From the norm equivalence of (6.15)

C‖u‖2
1 ≤ JP (u;0) = Q(u;u)

which establishes coercivity. Next, since each Lij is of order at most one,(
Lijuj ,Lklvl

)
0
≤ ‖Lijuj‖0‖Lklvl‖0 ≤ C‖uj‖1‖vl‖1,

which implies the continuity. As a result, existence and uniqueness of a
solution to (6.22) follows from the Riezs representation theorem. To show
that (6.23) also has a unique solution we note that Xh ⊂ X0. Thus, Q(·; ·)
remains continuous and coercive on Xh×Xh and (6.25) follows by a standard
finite element argument.

For the proof of the last part we agree to use uh or uhi to denote both a
finite element function and the coefficient vector of its nodal representation.
From the identities

(uh)TAhuh = Q(uh;uh) and (uhi )
TDuhi = (uhi , u

h
i )1

and the fact that Q(·; ·) is continuous and coercive it follows that

C−1
n∑
i=1

uhiDu
h
i ≤ (uh)TAhuh ≤ C

n∑
i=1

(uhi )
TDuhi ,

i.e., Ah and diag(D, . . . ,D) are spectrally equivalent.
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To find a bound for the condition number of Ah, we assume that (6.19)
is valid for Shd . Then

C−1h2M |uh|2 ≤ ‖uh‖2
0 ≤ Q(uh;uh) ≤ C‖uh‖2

1 ≤ Ch2M−2|uh|2

where the last inequality follows from (6.19) and (6.20). Thus, cond(Ah) =
O(h−2). 2

First-order Petrovski systems offer the most favorable setting for the
development of least-squares methods in the sense that a practical method
for such systems is derived directly from the ideal CLS principle. As a re-
sult, application of least-squares to Petrovski systems provides a variational
setting that is essentially identical with that of a classical Rayleigh-Ritz
method. Another advantage of such systems is the equivalence of Q(·; ·) and
the standard inner product on [H1(Ω)]n. As a result, least-squares alge-
braic problems for Petrovski systems can be preconditioned using any good
preconditioner for the Poisson equation.

6.5.2 Least-squares for first-order ADN systems

In this section we develop least-squares methods for first-order systems that
are not homogeneous elliptic. The CLS principle for such systems violates
one or more of the practicality requirements. As a result, a least-squares
method defined from this principle will lead to methods that are formally
quasi-optimal but would not be useful in practice. To circumvent this prob-
lem we consider Discrete Least-Squares Principles derived from the CLSP,
but based on practical discrete energy functionals. These functionals are not
necessarily norm-equivalent on the same spaces as the primary ones and, as
a result, their minimization may not be meaningful on Xq.

Weighted least-squares principles

Weighted least-squares principles are based on the premise that in finite
dimensional spaces all norms are equivalent. Thus, a norm which appears
in a least-squares functional and is impractical can be replaced by an L2-
norm scaled by the appropriate equivalence constant which usually depends
on the mesh parameter h. For the norm-equivalent functionals (6.16) and
(6.17) this leads to weighted L2 functionals given by

Jh(u; f) = h2
k∑
i=1

‖
N∑
j=1

Lijuj − fi‖2
0 +

N∑
i=k+1

‖
N∑
j=1

Lijuj − fi‖2
0 (6.26)
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and

Jh(u; f) =
k∑
i=1

‖
N∑
j=1

Lijuj − fi‖2
0 + h−2

N∑
i=k+1

‖
N∑
j=1

Lijuj − fi‖2
0, (6.27)

respectively. We note that (6.26) and (6.27) differ only by the common (and
unimportant for the minimization) factor h2, i.e., these two functionals are
essentially the same. Thus, we consider only methods based on (6.27). A
Discrete Least Squares principle associated with this functional is given by
a pair {Xh, Jh(·)}, where Xh is a finite dimensional space to be specified
later and Jh(·) is the functional (6.27). The discrete minimization problem
thus reads:

min
uh∈Xh

Jh(uh; f) . (6.28)

The corresponding discrete variational problem is

seek uh ∈ Xh such that Bh(uh;vh) = F h(vh) ∀vh ∈ Xh , (6.29)

where now

Bh(uh;vh) =
k∑
i=1

( N∑
j=1

Lijuhj ,
N∑
j=1

Lijvhj
)

0
+h−2

n∑
i=k+1

( N∑
j=1

Lijuhj ,
N∑
j=1

Lijvhj
)

0

and

F h(v) =
k∑
i=1

(fi,
N∑
j=1

Lijvhj )0 + h−2
N∑

i=k+1

(fi,
N∑
j=1

Lijvhj )0 .

Approximations defined by (6.29) are studied in the next theorem.

Theorem 5 Assume that the indices si, tj are given by (6.12) and (6.13),
respectively, and let

Xh = {uh |uh ∈
l∏

j=1

Shd ×
N∏

j=l+1

Shd+1; Ruh = 0 on Γ} (6.30)

where Shd and Shd+1 are finite element spaces satisfying (6.18) for some d ≥ 1.
Also, assume that there exists a positive integer r ≥ d such that the exact
solution u of (5.1)-(5.2) belongs to the space

Xr = {u |u ∈
l∏

j=1

Hr+1(Ω)×
N∏

j=l+1

Hr+2(Ω); Ru = 0 on Γ}

Then,



71

1. the least-squares variational problem (6.29) has a unique solution uh

and

l∑
j=1

‖uj−uhj ‖0+
N∑

j=l+1

‖uj−uhj ‖1 ≤ hd+1
( l∑
j=1

‖uj‖d+1+
N∑

j=l+1

‖uj‖d+2

)
;

(6.31)

2. condition number of the least-squares discretization matrix for (6.29)
is bounded by O(h−4).

Proof. The first part of this theorem follows from a general result of
Aziz et. al. [46]. To show the second part we proceed as in Theorem 4 to
find that now

C−1h2M |uh|2 ≤ ‖uh‖2
0 ≤ Bh(uh;uh) ≤ Ch−2‖uh‖2

1 ≤ Ch2M−4|uh|2,

i.e., cond(A) = O(h−4). 2

Compared with the method from §6.5.1, the weighted method does not
fit so nicely into a Rayleigh-Ritz-like framework. The principal reason is that
by using a DLSP based on the weighted functional (6.27) we have deviated
from the mathematically ideal framework prescribed by the CLSP for (6.16).
In particular, the least-squares variational problem (6.29) does not represent
a restriction to Xh of a variational problem associated with the CLSP. In
fact, the weighted method is nonconforming in the sense that while the
CLSP functional (6.16) is minimized over the space X0 =

∏l
j=1H

1(Ω) ×∏n
j=l+1H

2(Ω), the discrete space Xh is not contained in X0 but only in
X−1 =

∏l
j=1 L

2(Ω) ×
∏n
j=l+1H

1(Ω). Concerning the norm-equivalence of
(6.27) one can show that

l∑
j=1

‖uhj ‖2
0 +

N∑
j=l+1

‖uhj ‖2
1 ≤ Jh(uh;0) ≤ h−2

( l∑
j=1

‖uhj ‖2
0 +

N∑
j=l+1

‖uhj ‖2
1

)
,

(6.32)
provided (6.20) holds. Both the lower and the upper bounds in (6.32) are
in the norm of X−1, but the upper bound is scaled by h−2. This can be
interpreted as an attempt to mimic the norm on X0, however, this scaling
causes the bound for the condition number to behave like O(h−4). A sim-
ilar “one-sided” norm-equivalence bounds can be established for the other
weighted functional where now the scaling is h2 and is applied to the lower
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bound:

h2
( l∑
j=1

‖uhj ‖2
0+

N∑
j=l+1

‖uhj ‖2
1

)
≤ Jh(uh;0) ≤

l∑
j=1

‖uhj ‖2
0+

N∑
j=l+1

‖uhj ‖2
1 . (6.33)

According to the terminology of §5 we call such DLS principles quasi norm-
equivalent. Both (6.32) and (6.33) provide an example of DLS principles for
which the constants in the equivalence bound (5.21) are mesh-dependent.
The fact that these constants depend on h means that there is no apparent
spectral equivalence between the least-squares discretization matrix and the
matrix associated with the standard inner product on X0. This makes it
harder to precondition efficiently the discrete equations.

Discrete negative norm least-squares principles

In this section we focus attention on the negative norm functional (6.16).
Our goal is to find a discrete (mesh-dependent) replacement for the negative
norm ‖ ·‖−1 so that the resulting discrete functional retains the norm equiv-
alence properties of the continuous functional, at least for discrete functions.
We note that the weighted L2 norm h‖ · ‖0 used in (6.26) can be viewed as
one such replacement. However, this norm is not equivalent to ‖ · ‖−1 which
is reflected by the factor h2 that appears in (6.33). To define a discrete neg-
ative norm with better equivalence properties we use an approach suggested
by Bramble et. al. in [62]. As before, let Dij = (φi, φj)1 and let Bh denote
a symmetric and positive semidefinite operator that is spectrally equivalent
to D−1 in the sense that

C−1(D−1v, v) ≤ (Bhv, v) ≤ C(D−1v, v), ∀v ∈ L2(Ω) . (6.34)

We define the discrete negative norm as

‖v‖−h = ((h2I + Bh)v, v)1/2, ∀v ∈ L2(Ω) . (6.35)

Lemma 1 There exists a positive constant C such that for any u ∈ L2(Ω)

C−1‖u‖−1 ≤ ‖u‖−h ≤ C(h‖u‖0 + ‖u‖−1) . (6.36)

If the inverse inequality (6.20) holds for Shd then

C−1‖uh‖−1 ≤ ‖uh‖−h ≤ C‖uh‖−1 , (6.37)

that is, ‖ · ‖−h is equivalent to ‖ · ‖−1 on Shd .2
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For a proof of this lemma we refer to [50]. Note that without the term Bh

norm ‖ · ‖−h reduces to just a weighted L2 norm, i.e., this term is critical for
(6.36) and (6.37). To define the least-squares method we first replace the
energy functional (6.16) by the discrete negative norm functional

J−h(u; f) =
k∑
i=1

‖
N∑
j=1

Lijuj − fi‖2
−h +

N∑
i=k+1

‖
N∑
j=1

Lijuj − fi‖2
0 (6.38)

and then consider the Discrete Least Squares Principle

min
uh∈Xh

J−h(uh; f) (6.39)

where the space Xh is defined as in (6.30). The discrete variational problem
is then given by

seek uh ∈ Xh such that B−h(uh;vh) = Fhvh ∀vh ∈ Xh , (6.40)

where

B−h(uh;vh) =
k∑
i=1

( N∑
j=1

Lijuhj ,
N∑
j=1

Lijvhj
)
−h

+
N∑

i=k+1

( N∑
j=1

Lijuhj ,
N∑
j=1

Lijvhj
)

0

and

Fhv =
k∑
i=1

(fi,
N∑
j=1

Lijvhj )−h +
N∑

i=k+1

(fi,
N∑
j=1

Lijvhj )0 .

Theorem 6 Assume that Xh is defined by (6.30) for some integer d ≥ 1
and that the exact solution u of (5.1)-(5.2) belongs to the space Xr, defined
in Theorem 5, for some r ≥ 0. Then,

1. the least-squares variational problem (6.40) has a unique solution uh

and

l∑
j=1

‖uj−uhj ‖0 +
N∑

j=l+1

‖uj−uhj ‖1 ≤ hd̃+1
( l∑
j=1

‖uj‖d̃+1 +
N∑

j=l+1

‖uj‖d̃+2

)
(6.41)

where d̃ = min{r, d};
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2. the condition number of the least-squares discretization matrix for (6.40)
is bounded by O(h−2) and this matrix is spectrally equivalent to the
block-diagonal matrix

M = (G, . . . , G︸ ︷︷ ︸
l

, D, . . . ,D︸ ︷︷ ︸
N−l

),

where G = (φi, φj)0 is the Gramm matrix for the basis of Shd and
D = (φi, φj)1.

Proof. We first show that B−h(·; ·) is continuous and coercive on Xh ×
Xh, i.e.,

C−1(
l∑

j=1

‖uhj ‖2
0 +

N∑
j=l+1

‖uhj ‖2
1) ≤ B−h(uh;uh) (6.42)

≤ C(
l∑

j=1

‖uhj ‖2
0 +

N∑
j=l+1

‖uhj ‖2
1).

Since uhj ∈ Shd or Shd+1 and the order of each Lij is at most one, it follows
that Lijuhj ∈ L2(Ω) for all i, j = 1, . . . , n. Then, using the lower bound in
(6.36), the norm-equivalence of (6.16) and the fact that Xh is a subspace of
X−1 yields

B−h(uh;uh) =
k∑
i=1

‖
N∑
j=1

Lijuhj ‖2
−h +

N∑
i=k+1

‖
N∑
j=1

Lijuhj ‖2
0

≥ C
( k∑
i=1

‖
N∑
j=1

Lijuhj ‖2
−1 +

N∑
i=k+1

‖
N∑
j=1

Lijuhj ‖2
0

)
= CJ−1(uh;0)

≥ C
( l∑
j=1

‖uhj ‖2
0 +

N∑
j=l+1

‖uhj ‖2
1

)
= ‖uh‖2

X−1
.

To show continuity we note that all discrete negative norm terms in B−h(·; ·)
correspond to an equation index si = 0; i = 1, . . . , k, while all L2 terms - to
an equation index si = −1; i = k + 1, . . . , n. Let us fix 1 ≤ i ≤ k so that
si = 0. Then, using the Cauchy inequality, the fact that the order of each
Lij is at most one, and the inverse inequality, the ith term in B−h(·; ·) can
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be bounded as follows:( N∑
j=1

Lijuhj ,
N∑
j=1

Lijvhj
)
−h

≤
( N∑
j=1

‖Lijuhj ‖−h
)( N∑

j=1

‖Lijvhj ‖−h
)

≤
N∑
j=1

(
h‖Lijuhj ‖0 + ‖Lijuhj ‖−1

) N∑
j=1

(
h‖Lijvhj ‖0 + ‖Lijvhj ‖−1

)

≤
N∑
j=1

(
h‖uhj ‖1 + ‖uhj ‖0

) N∑
j=1

(
h‖vhj ‖1 + ‖vhj ‖0

)

≤
N∑
j=1

‖uhj ‖0

N∑
j=1

‖vhj ‖0

Next consider a term with k + 1 ≤ i ≤ n so that si = −1. Since degLij ≤
si + tj and tj = 1 for j = 1, . . . , l it follows that the first l differential
operators have order zero, while the last N − l have orders bounded by 1,
that is:

degLij = 0; j = 1, . . . , l; degLij ≤ 1; j = l + 1, . . . , N.

Then,( N∑
j=1

Lijuhj ,
N∑
j=1

Lijvhj
)

0

≤
N∑
j=1

‖Lijuhj ‖0

N∑
j=1

‖Lijvhj ‖0

=
( l∑
j=1

‖Lijuhj ‖0 +
N∑

j=l+1

‖Lijuhj ‖0

)( l∑
j=1

‖Lijvhj ‖0 +
N∑

j=l+1

‖Lijvhj ‖0

)

≤ C
( l∑
j=1

‖uhj ‖0 +
N∑

j=l+1

‖uhj ‖1

)( l∑
j=1

‖vhj ‖0 +
N∑

j=l+1

‖vhj ‖1

)
Combining both inequalities yields continuity in the norm of X−1:

B−h(uh;vh) ≤
( l∑
j=1

‖uhj ‖0 +
N∑

j=l+1

‖uhj ‖1

)( l∑
j=1

‖vhj ‖0 +
N∑

j=l+1

‖vhj ‖1

)
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= ‖uh‖X−1‖vh‖X−1 . (6.43)

This establishes existence and uniqueness of the least-squares solution uh.
To prove the error estimate we note that (6.40) is a consistent scheme and
thus, B−h(u − uh;vh) = 0 for all vh ∈ Xh. However, the error estimate
cannot be established using a standard finite element argument because
B−h(·; ·) is coercive and continuous only on Xh ×Xh. Thus, we proceed as
follows. Let uhI denote the interpolant of the exact solution u so that from
(6.18) it follows that

‖u− uhI ‖X−1 ≤ hd̃+1‖u‖Xd̃
.

Since
‖u− uh‖X−1 ≤ ‖u− uhI ‖X−1 + ‖uh − uhI ‖X−1

we only need to bound the last term above, which belongs to Xh:

‖uh − uhI ‖2
X−1

≤ CB−h(uh − uhI ;u
h − uhI )

= CB−h(uhI − u;uh − uhI )
≤ CB−h(uhI − u;uhI − u)1/2B−h(uh − uhI ;u

h − uhI )
1/2

≤ CB−h(uhI − u;uhI − u)1/2‖uh − uhI ‖X−1 .

Thus,
‖uh − uhI ‖X−1 ≤ CB−h(uhI − u;uhI − u)1/2.

To bound the energy norm of uhI − u = E note that

B−h(E;E)1/2 ≤ C(
k∑
i=1

‖
N∑
j=1

LijEj‖−h +
N∑

i=k+1

‖
N∑
j=1

LijEj‖0).

Using (6.36) for 1 ≤ i ≤ k,

‖
N∑
j=1

LijEj‖−h ≤
N∑
j=1

(h‖LijEj‖0 + ‖LijEj‖−1)

≤
N∑
j=1

(h‖Ej‖1 + ‖Ej‖0)

≤ hd̃+1
l∑

j=1

‖uj‖d̃+1 + hd̃+2
N∑

j=l+1

‖uj‖d̃+2.
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For k + 1 ≤ i ≤ N , we separate terms of orders zero and one:

‖
N∑
j=1

LijEj‖0 ≤
l∑

j=1

‖LijEj‖0 +
N∑

j=l+1

‖LijEj‖0

≤ C(
l∑

j=1

‖Ej‖0 +
N∑

j=l+1

‖Ej‖1)

≤ Chd̃+1
( l∑
j=1

‖uj‖d̃+1 +
N∑

j=l+1

‖uj‖d̃+2

)
This establishes (6.41). Lastly, the spectral equivalence between the least-
squares discretization matrix Ah and the matrix M follows from the identi-
ties

(uh)TAuh = B−h(uh;uh), (uhj )
TDuhj = (uhj , u

h
j )1,

(uhj )
TGuhj = (uhj , u

h
j )0,

and (6.42). This also implies that cond(A) = O(h−2). 2

Like the weighted method, the negative norm method is based on a DLS
principle which does not represent a restriction to Xh of a CLS principle. As
a result, both methods are not conforming in the sense of §5. However, the
negative norm functional (6.38) retains the norm equivalence properties of
(6.16) for all discrete functions, while the weighted functional does not. As
a result, the negative norm method leads to algebraic problems which have
better condition numbers and are easier to precondition. Indeed, Theorem
6 shows that (5.21) holds for (6.38) with δ1(h) and δ2(h) independent of h,
i.e., Ah and M are spectrally equivalent. This means that any matrix that
is spectrally equivalent to M can be used to precondition Ah. It is easy to
see that the Gramm matrix G is spectrally equivalent to h2I so that if T is
any good preconditioner for the Poisson equation, the matrix

L = diag(h2I, . . . , h2I︸ ︷︷ ︸
l

, T, . . . , T︸ ︷︷ ︸
N−l

) (6.44)

can be used for this purpose. On the other hand, the negative norm method
is more complicated algorithmically and must be implemented in an assembly-
free way because of the density of the matrix Ah. Thus, the possibility
to devise efficient preconditioners for Ah is essential for the utility of this
method.
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6.6 Concluding remarks

In this chapter we demonstrated the use of ADN elliptic theory in the anal-
ysis and development of least-squares finite element methods. The principal
role of ADN theory was to identify the proper balance (5.3) between solu-
tion and residual energies. For ADN elliptic systems this balance is given
by (6.4) in Theorem 3 or, equivalently, by (6.5).

Our main focus was on first-order systems because first-order operators
are most convenient from practical point of view. In §6.4 we specialized the
results of Theorem 3 to such systems and identified two distinctive classes
of first-order operators:

• the class of homogeneous elliptic first-order operators for which (6.5)
is given by (6.11), and

• the class of non-homogeneous elliptic first-order operators, for which
(6.5) is given by (6.14).

These classes resulted in two substantially different settings for the least-
squares method. The homogeneous elliptic class leads to well-posed CLS
principles {Xq, J(·)} where J(·) is given by (6.15). For q = 0 the space X0

is a product of H1(Ω) spaces and J(·) involves only L2-norms of first-order
terms. As a result, the DLS principle {Xh, Jh(·)} is merely a restriction of
the CLS principle to the finite element subspace Xh.

The non-homogeneous elliptic class leads to well-posed CLS principles
{Xq, J(·)} where J(·) is now given by (6.16) or (6.17). The second functional
contains H1-norms; the first - H−1-norms. In both cases these functionals
are not practical. We considered two possibilities for transforming {Xq, J(·)}
into a practical DLS principle {Xh, Jh(·)}.

The first one was to replace (6.17) by a weighted L2-norm functional.
This leads to quasi norm-equivalent DLS principles in which the upper
and/or lower bounds in the equivalence relations (5.20) and (5.21) depend
on h.

The second possibility was to replace (6.16) by the discrete negative
norm functional (6.38). This leads to norm-equivalent DLS principles in
which the equivalence relations (5.20) and (5.21) hold independently of h.

To summarize, among the main conclusions from this chapter is the
observation that

a first-order reformulation will lead to a mathematically well-
posed least-squares principle, which at the same time is practical,
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if and only if the first-order differential operator is homogeneous
elliptic.
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Chapter 7

Least-squares for the Stokes
and the Navier-Stokes
equations

The Stokes equations (2.17), first encountered in §2.2, belong to the class of
problems whose solutions can be characterized by constrained optimization
of convex, quadratic functional. We also recall that the use of Lagrange
multipliers led us to the mixed formulation (2.16). A finite element method
based on these weak equations is subject to the restrictive inf-sup condition
(2.25).

The nonlinear Navier-Stokes equations (2.37) are, on the other hand,
an example of a system which is not associated with optimization problem.
Here the weak formulation (2.38)-(2.39) was obtained by formal Galerkin
procedure. Nevertheless, finite element methods based on this weak problem
are also subject to the inf-sup condition.

As a result, application of least-squares principles for the design of finite
element methods for (2.17) and (2.37) is justified. The next step is to apply
the methodology developed in Chapter 6 in a manner which will allow one
to fully utilize the potential of least-squares in the algorithmic design. From
§4.2 in Chapter 4 we know that direct use of the second order system will
not, in general, lead to a practical method. Therefore, our first task will
be to enlarge the set of potentially practical CLS principles for the Stokes
equations by developing a sufficient supply of equivalent first-order formula-
tions. For each one of these formulations we use the ADN theory to identify
the settings which verify hypotheses A.1-A.2 of §5.1. For simplicity we con-
sider homogeneous boundary conditions and assume that solutions spaces

81
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are constrained by the boundary conditions. Therefore, our discussion fo-
cuses on proper choices of data spaces Y (Ω) and solution spaces X(Ω) which
verify A.1-A.2. The choice of Z(Γ) is only briefly discussed in section 7.2.

Each one of the first-order Stokes formulations can be extended to the
nonlinear case in an obvious manner by including an appropriate form of
advective term. This extension is not accompanied by introduction of new
dependent variables and so we will use the same terms to denote both the
linear and the nonlinear first-order systems.

7.1 First-order equations

Transformation of a high-order PDE to a first-order system can be accom-
plished in many different ways. The original procedure described in [11]
(see §6.3) introduces as new dependent variables all high order derivatives.
While this approach is universal in the sense that it can be applied to any
ADN system and will result in an ADN system, it is not necessarily the
best one. One reason is that the total number of variables in the new sys-
tem can increase dramatically. Example 2 shows that transformation can
also be effected using linear combinations of derivatives. This has the addi-
tional advantage of allowing direct approximation of physically meaningful
variables represented by such linear combinations, and without a significant
increase in the number of dependent variables.

For the Stokes equations (2.17) there exist three general categories of
transformations to first-order systems. The first one, which is essentially
the approach described in [11], is to use all partial derivatives of the vector
valued field u as new variables, i.e., to set U = ∇u. Another choice is to
use as a new variable the axial vector of the skew-symmetric gradient tensor
U = (∇u − ∇uT )/2. This variable was introduced in Example 2 and it
leads to a vorticity based first-order system. A third choice is to use the
symmetric gradient tensor U = (∇u +∇uT )/2. This variable gives rise to
stress-based Stokes system.

7.1.1 The velocity-vorticity-pressure equations

The velocity-vorticity-pressure first-order Stokes system and the companion
Navier-Stokes formulation are by a wide margin the most popular in the
context of least-squares methods for incompressible flows. It was introduced
by Jiang and Chang in [98] and then explored by a number of researchers in
[99], [100, 101, 102, 103], [104], [54], [55] and [50]. Theoretical analysis was
carried by Bochev and Gunzburger [48], [47], and [56, 57].
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To state this formulation recall the curl operator in three dimensions
and its two-dimensional counterparts

∇× φ =
(

φy
−φx

)
and ∇× u = u2x − u1y .

The context should make clear which operator is relevant.
We also recall that the axial vector of the skew-symmetric part of the

velocity gradient is given by ω = ∇×u and is called vorticity vector. Using
this vector as a new dependent variable, the vector identity

∇×∇× u = −4u +∇∇ · u ,

and in view of the incompressibility constraint ∇·u = 0 the Stokes equations
(2.17) can be cast into the first-order system

ν∇× ω +∇p = f in Ω (7.1)
∇ · u = 0 in Ω (7.2)

∇× u− ω = 0 in Ω (7.3)

along with the velocity boundary condition

u = 0 on Γ (7.4)

and the zero mean pressure constraint (2.18).
In two dimensions, the system (7.1)-(7.3) contains four equations and

four unknowns and is uniformly elliptic of total order four. In three dimen-
sions, the number of equations and unknowns is seven, and the resulting
system is not elliptic in the sense of ADN. By adding the redundant equa-
tion

∇ · ω = 0 in Ω (7.5)

and the gradient of a “slack” variable φ to (7.3):

∇× u− ω +∇φ = 0 in Ω , (7.6)

uniform ellipticity can be restored; see [75]. The augmented system (7.1),
(7.2), (7.5), and (7.6) has total order eight, in contrast to the total order of
the Stokes problem in primitive variables which is six in three dimensions.
It should be noted that one also imposes homogeneous boundary conditions
for the slack variable φ and that one can then show that φ ≡ 0 so that, a
posteriori, (7.6) is identical to (7.3). In fact, the addition of φ is needed
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only for the purpose of analyses; it is not needed in the development or
implementation of least-squares based algorithms for which one can safely
use the system (7.1)-(7.5). However, the addition of (7.5) is crucial to the
stability and accuracy of least-squares finite element methods for the Stokes
problem in three dimensions.

To extend the velocity-vorticity-pressure formulation to the Navier-Stokes
equations, one has to choose a particular form for the nonlinear term in
(2.37). One possibility is to keep the nonlinear term in a form involving
only the velocity field, i.e., to replace (7.1) by

ν∇× ω + u · ∇u +∇p = f in Ω . (7.7)

Another possibility is to use the vector identity

u · ∇u =
1
2
∇|u|2 − u×∇× u =

1
2
∇|u|2 − u× ω

to replace (7.1) by

ν∇× ω + ω × u +∇P = f in Ω , (7.8)

where P = p+ 1/2|u|2 denotes the total pressure.
Our ultimate goal is to use equations (7.1)-(7.3) to set up a least-squares

principle for the Stokes equations. Thus, we turn attention to the abstract
framework of §5.1, and especially the verification of the two hypothesis A.1.
and A.2.. For simplicity, we restrict attention to the case of two space di-
mensions; most of the relevant results can be easily extended to the aug-
mented system, i.e., including (7.5), in three dimensions.

Let us recall that the relevance of A.1 stems from the fact that this
hypothesis implies the correct “energy balance” (5.3) for the least-squares
principle. In other words, A.1 allows us to determine both the correct ar-
tificial least-squares energy functional, and the appropriate minimization
space for this functional. To determine functional settings in which elliptic
boundary value problems are well-posed, we will rely on the elliptic regu-
larity theory of Agmon, Douglis and Nirenberg [11]. From Chapter 6 we
know that well-posed problems are characterized as having uniformly el-
liptic principal parts and boundary conditions which satisfy the celebrated
complementing condition. One advantage of this approach for finding the
appropriate function setting in A.1 is that ADN theory allows one to treat
in a systematic way different choices of boundary conditions. As we shall
see, the choice of boundary conditions has great importance to the validity
of a priori estimates. At the same time, direct methods do not allow for
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a unified treatment of several boundary conditions. Because of the rather
complex nature of ADN theory here we present only a summary of results
from the analysis. The technical details that accompany verification of A.1
are summarized for the convenience of the reader in Appendix A. More
details can be found in [56], [47] and [48].

From Example 2 we know that the velocity-vorticity-pressure Stokes
problem admits two different principal parts given by

Lp1 =

 ν∇× ω + ∇p
∇× u
∇ · u

 (7.9)

and

Lp2 =

 ν∇× ω + ∇p
−ω + ∇× u

∇ · u

 , (7.10)

respectively. In view of the boundary condition (7.4) and the zero mean
condition (2.18), the function spaces in (6.3) corresponding to these principal
parts specialize to

Xq = Hq+1(Ω)×Hq+1(Ω) ∩ L2
0(Ω)×Hq+1(Ω) ∩H1

0(Ω) (7.11)

and
Yq = Hq(Ω)×Hq(Ω)×Hq(Ω) (7.12)

for (7.9) and

Xq = Hq+1(Ω)×Hq+1(Ω) ∩ L2
0(Ω)×Hq+2(Ω) ∩H1

0(Ω) (7.13)

and
Yq = Hq(Ω)×Hq(Ω)×Hq+1(Ω) (7.14)

for (7.10). We recall that Xq denotes the function space for the unknowns
(ω, p,u) and Yq denotes the function space for the data or equation residu-
als. Furthermore, since the pressure zero mean constraint (2.18) is imposed
on the pressure space component in (7.11) and (7.13), the uniqueness of the
solutions is guaranteed. As a result, the two a priori bounds (6.11) and
(6.14) specialize to

‖ω‖q+1 + ‖p‖q+1 + ‖u‖q+1

≤ C (‖ν∇× ω +∇p‖q + ‖∇ × u− ω‖q + ‖∇ · u‖q) (7.15)
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and

‖ω‖q+1 + ‖p‖q+1 + ‖u‖q+2

≤ C (‖ν∇× ω +∇p‖q + ‖∇ × u− ω‖q+1 + ‖∇ · u‖q+1) , (7.16)

respectively. In the context of §5.2, the a priori bounds (7.15) and (7.16)
represent the least-squares energy balance (5.3). Likewise, the solution and
data space pairs (7.11)-(7.12) and (7.13)-(7.14) provide the proper energy
balance between residual energy and solution energy. Note also that the
setting provided by (7.11)-(7.12) and (7.15) corresponds to a homogeneous
elliptic problem. In contrast, the setting of (7.13)-(7.14) and (7.16) describes
a non-homogeneous elliptic system.

Although both principal parts (7.9) and (7.10) are uniformly elliptic
operators of total order four, not all boundary conditions for the system
(7.1)-(7.3) will satisfy the complementing condition for both principal parts.
For example, the boundary condition (7.4) on the velocity vector satisfies the
complementing condition1 only with the principal part (7.10). As a result,
the a priori estimate for the system (7.1)-(7.3), (7.4), and (2.18) relevant to
the least-squares methods, is given by (7.16). In fact, one can show that
the estimate (7.15) cannot hold with the velocity boundary condition; see
Example 3 in Appendix A.

An example of a boundary condition for which (7.15) is valid is provided
by the pressure-normal velocity boundary condition

p = 0 and u · n = 0 on Γ . (7.17)

The fact that (7.16) is not valid for velocity boundary conditions indicates
that the corresponding boundary value problem is not well-posed in the
spaces (7.11)-(7.12). This can also be seen by considering the principal
part (7.9) along with the velocity boundary condition. The corresponding
boundary value problem then uncouples into two ill-posed problems given
by {

ν∇× ω +∇p = f
}

and


∇× u = 0
∇ · u = 0

u|Γ = 0

 ;

the first is underdetermined and the second is overdetermined. In contrast,
the same principal part with (7.17) uncouples into two well-posed problems:{

ν∇× ω +∇p = f
p|Γ = 0

}
and


∇× u = 0
∇ · u = 0

u · n|Γ = 0

 .

1This is shown in detail in Appendix A.
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We can conclude that

• the velocity-vorticity-pressure system satisfies A.1 with two distinc-
tively different functional settings;

• These settings are described by the solution and data space combina-
tions given by the pairs (7.11)-(7.12) and (7.13)-(7.14), respectively;

• Validity of a specific setting depends critically on the particular set of
boundary conditions;

• the use of the homogeneous elliptic setting (7.11)-(7.12) or the inho-
mogeneous elliptic setting (7.13)-(7.14) to define a CLSP will depend
on the boundary condition.

What is even more striking, there are examples of boundary conditions for
which the setting, that is validity of either (7.15) or (7.16) changes with the
space dimension. Table 7.1.1, taken from [48], gives a list of boundary condi-
tions classified according to the ellipticity setting for the velocity-vorticity-
pressure equations. In Table 7.1.1, Type 1 refers to boundary conditions for
which (7.15) is valid; Type 2 denotes boundary conditions for which (7.16)
holds. Consider for instance the tangential velocity-pressure boundary con-
dition

n× u× n = 0 and p = 0 on Γ .

In two dimensions, this boundary operator satisfies the complementing con-
dition with either of the principal parts (7.9) or (7.10), whereas in three di-
mensions it satisfies the same condition only with the principal part (7.10).
As a result, the estimate (7.15) is valid only in two dimensions.

7.1.2 The velocity-pressure-stress equations

A first-order system with substantially different properties is obtained when
the stress tensor scaled by

√
ν/2

T =
√

2νε(u) , where ε(u) ≡ 1
2

(
∇u + (∇u)T

)
,

is used in the transformation of (2.17) into a first-order system. Here, the
relevant vector identity is given by

∇ ·T =
√

2ν (4u +∇∇ · u) ,

where ∇ · T denotes the vector whose components are the divergences of
the corresponding rows of T. Then, in view of incompressibility constraint,
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Table 7.1: Classification of boundary conditions for the Stokes and Navier-
Stokes equations: velocity-vorticity-pressure formulation.

Boundary conditions R3 R2 Type

BC1 Velocity u u 2
Slack variable φ -

BC1A Velocity u u 2
Normal vorticity ω · n -

BC2 Normal velocity u · n u · n
Normal vorticity ω · n - 1
Pressure r r
Slack variable φ -

BC2A Normal velocity u · n u · n
Tangential vorticity n× ω × n ω 1
Slack variable φ -

BC2B Normal velocity u · n u · n not well-posed
Tangential vorticity n× ω × n ω (r is redundant in R2

Pressure r r

BC2C Normal velocity u · n u · n not well-posed in R3

Vorticity ω ω 1 in R2

BC3 Tangential velocity n× u× n u · t 2 in R3

Pressure r r 1 in R2

Slack variable φ -

BC3A Tangential velocity n× u× n u · t
Normal vorticity ω · n - 1
Pressure r r

BC3B Tangential velocity n× u× n u · t not
Normal vorticity ω · n - well-posed
Slack variable φ -

BC3C Tangential velocity n× u× n u · t 1
Tangential vorticity n× ω × n ω

BC4 Vorticity ω ω not
Pressure r r well-posed

BC4A Vorticity ω ω not
Slack variable φ - well-posed

BC5 Tangential vorticity n× ω × n ω not
Pressure r r well-posed
Slack variable φ -

the system (2.17) and (7.4) can be replaced by the velocity-pressure-stress
system

√
2ν∇ ·T−∇p = f in Ω

∇ · u = 0 in Ω
T−

√
2ν ε(u) = 0 in Ω

u = 0 on Γ .

(7.18)
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The inclusion of the nonlinear term u · ∇u into the first equation of (7.18)
provides an extension of the velocity-pressure-stress system to the Navier-
Stokes equations. As before, uniqueness of solutions to (7.18) can be guar-
anteed by imposing the zero mean constraint (2.18) on the pressure space.

Again, our main goal is to find settings in which A.1-A.2 hold, so as to
establish the proper theoretical setting for least-squares principles based on
(7.18). As we saw in the last section this task can be effectively accomplished
by the ADN elliptic theory. Here we use again the same approach. For the
technical details the reader is referred to §A.2 in Appendix A or [58].

In two dimensions, the velocity-pressure-stress system has six equations
and unknowns. In three dimensions, the number of unknowns and equations
increases to ten. It can be shown that in 2D the principal part of (7.18) is
given by the differential operator

Lp U =



T1 −
√

2ν ∂u1
∂x

2T2 −
√

2ν(∂u1
∂y + ∂u2

∂x )
T3 −

√
2ν ∂u2

∂y
∂u1
∂x + ∂u2

∂y√
2ν(∂T1

∂x + ∂T2
∂y )− ∂p

∂x√
2ν(∂T2

∂x + ∂T3
∂y )− ∂p

∂y


, (7.19)

that is
LP = L .

In contrast to the velocity-vorticity-pressure equations, the principal part
(7.19) is unambiguously defined, and the total order of (7.18) coincides with
the total order of the Stokes problem in primitive variables in both two and
three dimensions; see §A.2.

The functional setting that provides verification of hypothesis A.1 in
two dimensions for the problem (7.18) is given by

Xq = [Hq+1(Ω)]3 ×Hq+1(Ω) ∩ L2
0(Ω)× [Hq+2(Ω) ∩H1

0 (Ω)]2

for the unknowns (T, p,u) and

Yq = [Hq(Ω)]2 ×Hq+1(Ω)× [Hq+1(Ω)]3

for the data or equation residuals. As a result, the a priori estimate (6.14)
now specializes to

‖T‖q+1 + ‖p‖q+1 + ‖u‖q+2 (7.20)

≤ C
(
‖
√

2ν∇ ·T−∇p‖q + ‖∇ · u‖q+1 + ‖T−
√

2ν ε(u)‖q+1

)
.
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Note that the estimate (7.20) implies that regardless of the choice of bound-
ary operators, the system (7.18) is not of Petrovsky type, i.e., it cannot be
homogeneous elliptic.

7.1.3 Velocity gradient-based transformations

From the specializations of the energy balance (5.3) that we have encoun-
tered so far only (7.15) does not require combinations of different order
spaces for the solution and the data. This was due to the fact that only the
setting (7.11)-(7.12) corresponds to a homogeneous elliptic system. From
Theorem 4 in §6.5.1 we also know that among all first-order ADN systems,
homogeneous elliptic systems are the most appealing from a least-squares
point of view. To recall, this was due to the fact that

solution energy can be measured in the L2-norm;

and in combination with the fact that only first-order derivatives appear in
the equations it means that

only standard, C0 finite element spaces are required.

Because lower and upper bounds in the energy balance (6.11) for homo-
geneous elliptic systems are given in terms of the H1-norm, in the least-
squares literature such formulations are often called H1-coercive. A further
advantage of least-squares methods based on H1-coercive systems is that
the algebraic equations can be solved by efficient multilevel techniques; see
[66].

However, neither velocity-vorticity-pressure system nor the velocity -
pressure - stress equations posses this property, at least for the practically
important velocity boundary condition. It turns out that in order to de-
fine a first-order form of the Stokes equations which at the same time is
homogeneous elliptic, one has to introduce ∇u as a new dependent variable
and then augment the differential equations by a number of compatibility
conditions. We call such systems velocity gradient-based. Essentially, the
transformations we are about to discuss follow the original recipe of [11]
in which all higher order derivatives are used as new variables. The point
at which they depart from this recipe is the use of redundant relations to
augment the equations until the new system becomes homogeneous elliptic.

Velocity gradient-velocity-pressure equations

To define the first velocity gradient-velocity-pressure formulation, one in-
troduces all first derivatives of the velocity components as new dependent
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variables, i.e., we set U = (∇u)t so that Vij = (∂ui/∂xj). In terms of U,
the Stokes problem (2.17) is given by

−ν∇ ·U +∇p = f in Ω (7.21)
∇ · u = 0 in Ω (7.22)

U− (∇u)t = 0 in Ω , (7.23)

and (7.4). In (7.21) ∇ · U denotes the vector whose components are the
divergences of the corresponding rows of U. The system (7.21)-(7.23) and
(7.4) is not fully H1-coercive. It can be shown; see [66], [67] that the energy
balance (5.3) for this system is

‖U‖q+1 + ‖u‖q+2 + ‖p‖q+1 (7.24)
≤ C

(
‖ − ν∇ ·U +∇p‖q + ‖U− (∇u)t‖q+1 + ‖∇ · u‖q+1

)
.

In [67], the new variables U are called “velocity fluxes;” since that terminol-
ogy is usually reserved for a different physical quantity, we prefer the term
“velocity gradient.”

The main idea of [67] is that full H1-coercivity can be obtained by aug-
menting (7.21)-(7.23) with additional constraints. In particular, in view of
the identity trU = ∇ · u, the definition of U, and the boundary condition
(7.4), one can add to (7.21)-(7.23) the equations

∇(trU) = 0 in Ω (7.25)

and
∇×U = 0 in Ω (7.26)

and the boundary condition

U× n = 0 on Γ , (7.27)

where ∇ × U denotes the vector whose components are the curls of the
corresponding rows of U and U × n denotes the vector whose components
are the vector product of the rows of U with the unit outer normal vector
n.

The resulting system (7.21)-(7.23) and (7.25)-(7.27) is overdetermined,
but consistent. In two-dimensions, the number of unknowns equals seven,
and the number of equations equals eleven. In three-dimensions, we have
thirteen unknowns and twenty five equations2. The system (7.21)-(7.23)

2Strictly speaking this means that the ADN theory cannot be applied directly to the
overdetermined system. To apply this theory it is first necessary to augment the equations
by one or more slack variables in a manner similar to the one described in §7.1.1. The slack
variables are only needed for the analyses and can be safely omitted from computations.
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augmented with (7.25)-(7.27) now admits a functional setting in which hy-
pothesis A.1. is satisfied for

Xq = H̃q+1(Ω)×Hq+1(Ω) ∩H1
0(Ω)×Hq+1(Ω) ∩ L2

0(Ω)

for the unknowns (U,u, p), where H̃q+1(Ω) = [Hq+1(Ω)]n
2

constrained by
(7.27), and

Yq = Hq(Ω)×Hq(Ω)× [Hq(Ω)]n
2 ×Hq(Ω)×Hq(Ω)

for the equation residuals. The energy balance (6.5) for the augmented
system specializes to

‖U‖q+1 + ‖u‖q+1 + ‖p‖q+1 ≤ C
(
‖ − ν∇ ·U +∇p‖q + ‖∇ · u‖q

+‖U− (∇u)t‖q + ‖∇(trU)‖q + ‖∇ ×U‖q
)
. (7.28)

The two velocity gradient-velocity-pressure formulations can be easily
extended to the Navier-Stokes equations. In terms of the new variable U,
the nonlinear term in (2.37) can be expressed as U · u so that, for the
Navier-Stokes problem, (7.21) is replaced by

−ν∇ ·U + U · u +∇p = f in Ω .

The constrained velocity gradient-pressure equations

This approach was suggested in [78] and here we present it in the case of two
space dimensions. The new variables introduced to effect the transformation
to a first-order system are the entries of the velocity gradient constrained
by the incompressibility constraint ∇ · u = 0, i.e., they are given by

G =
(
v1 v2
v3 −v1

)
(7.29)

where

v1 =
∂u1

∂x1
= −∂u2

∂x2
, v2 =

∂u1

∂x2
, and v3 =

∂u2

∂x1
,

and where u1 and u2 denote the components of the velocity u. Using the new
variables and the equality of second mixed derivatives, the Stokes problem
(2.17) in two dimensions can be written in the form (see [78])

−ν∇ ·G +∇p = f in Ω
∇×G = 0 in Ω (7.30)
G× n = 0 on Γ.
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In [78], the new variables (7.29) are called “accelerations” and the system
(7.30) the “acceleration-velocity” formulation of the Stokes equations. How-
ever, the new variables are not components of the acceleration vector so that,
instead, we call the system (7.30) the constrained velocity gradient-pressure
formulation of the Stokes problem.

The planar system (7.30) has four equations and four unknowns, and one
can show that it is elliptic in the sense of Petrovsky so that, with H̃q+1(Ω) =
[Hq+1(Ω)]3 constrained by the boundary condition in (7.30), hypothesis A.1
holds with

Xq = H̃q+1(Ω)×Hq+1(Ω) ∩ L2
0(Ω) and Yq = [Hq(Ω)]2 × [Hq(Ω)]2

for the unknowns (G, p) and the equation residuals, respectively. The energy
balance (6.5) for this functional setting specializes to

‖G‖q+1 + ‖p‖q+1 ≤ C (‖ − ν∇ ·G +∇p‖q + ‖∇ ×G‖q) . (7.31)

The velocity has been eliminated from (7.30); it is recovered by solving
the additional div-curl system

∇× u = v3 − v2 in Ω
∇ · u = 0 in Ω
u · n = 0 on Γ

. (7.32)

Although it is not obvious that the solution of (7.32) satisfies the boundary
condition (7.4), it can be shown that this is indeed the case.

Although the system (7.30) is H1-coercive, owing to the elimination
of the velocity field, this system cannot be extended to the Navier-Stokes
equations. Elimination of the velocity field in (7.30) can be considered as
an artifact since one can simply consider (7.30) together with (7.32). Such
a first-order system is studied in [83], where the new variables are called
“stresses” and the corresponding first-order system is called the “stress-
velocity-pressure” Stokes system despite the fact that the new variables are
not the components of the stress tensor. This is not to be confused with the
formulation of §7.1.2 for which the true stresses are used.

7.1.4 First-order formulations: concluding remarks

In sections 7.1.1–7.1.3 we presented five different first-order systems that can
be derived from the Stokes equations by introducing new dependent vari-
ables. In all five cases the new variables involve derivatives of the velocity
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field. When new variables represent linear combinations of these deriva-
tives, such as the vorticity or stresses, resulting systems are not always H1-
coercive. This is due to the fact that interdependencies between the new
variables and the velocity field remain coupled, i.e., formulations “remem-
ber” that some of the variables are actually velocity derivatives. To uncouple
the variables and obtain homogeneous elliptic systems, the velocity-gradient
and the constrained velocity-gradient approaches use the components of the
velocity gradient as new dependent variables, and add new constraints un-
til the dependencies between the variables become subdominant. This may
lead to an overdetermined, but consistent, problem.

7.2 Inhomogeneous boundary conditions

Here we briefly discuss the proper choice of the boundary data space Z(Γ)
for the first-order Stokes systems presented above. This space is required
if one wishes to set up a CLS principle in which boundary conditions are
enforced weakly instead of being imposed on the solution space X(Ω).

Recall that the velocity-vorticity-pressure Stokes problem has an am-
biguously defined principal part and that, as a result, there are two possible
functional settings that verify the hypotheses of §5.1. These two settings are
given by (7.11)-(7.12) and (7.13)-(7.14), respectively. When this problem is
augmented with inhomogeneous boundary conditions, the data spaces are
given by Yq ×Zq, where Zq is a trace space defined on Γ. The specific form
of Zq then can be determined from (6.4) in Theorem 3. Of course, given a
particular boundary operator, the form of Zq will depend on the principal
part which verifies the complementing condition for this boundary opera-
tor. For example, the velocity-vorticity-pressure formulation of the Stokes
equations with the pressure-normal velocity boundary condition (7.17) is
homogeneous elliptic and this space is given by

Zq = Hq+1/2(Γ)×Hq+1/2(Γ)

for (u ·n, p), whereas for the velocity boundary condition (7.4) we have that

Zq = [Hq+3/2(Γ)]n, n = 2 or 3 ,

for u. As a result, the relevant a priori estimates corresponding to the two
principal parts (7.9) and (7.10) are now given by

‖ω‖q+1 + ‖p‖q+1 + ‖u‖q+1 (7.33)
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≤ C
(
‖ν∇× ω +∇p‖q + ‖∇ × u− ω‖q + ‖∇ · u‖q

+‖u · n‖q+1/2,Γ + ‖p‖q+1/2,Γ

)
and

‖ω‖q+1 + ‖p‖q+1 + ‖u‖q+2 (7.34)

≤ C
(
‖ν∇× ω +∇p‖q + ‖∇ × u− ω‖q+1 + ‖∇ · u‖q+1

+‖u‖q+3/2,Γ

)
,

respectively. A priori estimates for other first-order Stokes problems with
inhomogeneous boundary conditions can be derived in a similar manner.
For example, when the first-order Stokes problem is H1-coercive, e.g., the
velocity gradient-velocity-pressure formulation, the space Zq for the inhomo-
geneous velocity boundary condition is given by [Hq+1/2(Γ)]n, n = 2 or 3. If
the system is not H1-coercive, e.g., the velocity-stress-pressure formulation,
then Zq is given by [Hq+3/2(Γ)]n, n = 2 or 3.

Therefore, (7.33) and (7.34) provide the energy balance (5.3) for least-
squares principles in which essential boundary conditions are enforced vari-
ationally. In particular, these estimates indicate the appropriate norms that
should be used to measure the energy of the boundary data.

In conclusion, we note that the Agmon-Douglis-Nirenberg theory also
allows one to determine the form of the boundary data space Zq when the
boundary condition involves differential operators. Such boundary condi-
tions for the Stokes problem are, however, outside the scope of these notes.

7.3 Least-squares methods

Each one of the first-order systems considered in §§7.1.1–7.1.3 leads to a
continuous least-squares principle (CLSP) by virtue of functional settings
that verify hypotheses A.1-A.2 in §5.2. All systems, that is the velocity-
vorticity-pressure (7.1)-(7.3), the velocity-pressure stress (7.18) and the ve-
locity - gradient equations (7.21)-(7.23), or (7.30) are first-order ADN sys-
tems3. As a result, least-squares methods for the Stokes equations based
on these systems can be developed according to the approach described in

3With the possible addition of slack variables whenever the original first-order system
is overdetermined.
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Chapter 6. In particular, (5.4) specializes to the following least-squares func-
tionals for the Stokes equations with the velocity boundary condition (7.4):

Velocity-vorticity-pressure functional:

J(ω,u, p) =
1
2

(
‖ν∇×ω +∇p− f‖2

q +‖∇×u−ω‖2
q+1 +‖∇·u‖2

q+1

)
(7.35)

Velocity-pressure-stress functional:

J(T,u, p) =
1
2

(
‖T−

√
2ν ε(u)‖2

q+1 + ‖∇ · u‖2
q+1 (7.36)

+‖
√

2ν∇ ·T−∇p− f‖2
q

)
Constrained velocity gradient-pressure functional:

J(G, p) =
1
2

(
‖ − ν∇ ·G +∇p− f‖2

q + ‖∇ ×G‖2
q

)
(7.37)

Velocity gradient-velocity-pressure functional I:

J(U,u, p) =
1
2

(
‖−ν∇·U+∇p−f‖2

q+‖∇·u‖2
q+1+‖U−(∇u)t‖2

q+1

)
(7.38)

Velocity gradient-velocity-pressure functional II:

J(U,u, p) =
1
2

(
‖ − (∇ ·U)t +∇p− f‖2

q + ‖∇ · u‖2
q (7.39)

+ ‖U−∇ut‖2
q + ‖∇(trU)‖2

q + ‖∇ ×U‖2
q

)
.

Only (7.37) and (7.39) are based on homogeneous elliptic first-order sys-
tems, i.e., only these functionals are H1-norm equivalent. Therefore, least-
squares methods based on these two functionals can be developed according
to §6.5.1. In particular, the CLS principles for these functionals are practical
and no transformation to a DLSP is required4.

For all other functionals practical least-squares methods will necessar-
ily involve a transformation of CLSP to a practical Discrete Least Squares
Principle (DLSP). Here we will employ the techniques of §6.5.2, namely the
weighted norm approach and the negative norm approach. Both the weighted

4In the sense that DLSP is simply a restriction of {X0, J(·)} to the finite element
subspace Xh of X0.
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and the negative norm approach will lead to least-squares methods that are
optimally accurate.

However, a reasonable DLS principle and a sensible method can also
be defined based only on the assumptions stated in §5.3. According to the
terminology adopted in Chapter 5, we call methods based on such principles
non-equivalent because they are not based on mathematically established
energy balance for the PDE. In this case, the only requirements that must
be met by the abstract DLSP represented by (5.14) were stated in D.1-
D.2. While resulting least-squares methods may not be optimal, Theorem
2 indicates that they are still capable of producing approximate solutions to
our problems. Moreover, methods based only on D.1-D.2 are usually very
straightforward to implement, especially when compared with negative norm
methods. For this reason, we devote the next section to a brief discussion
of such methods for the Stokes equations.

7.3.1 Non-equivalent least-squares

Historically, the first examples of least-squares methods for the Stokes and
the Navier-Stokes equations were based on non-equivalent least-squares func-
tionals; see, e.g., [98, 99, 101] and [103], among others. The reason for
this was the fact that combination of first-order systems with L2-norms to
measure the residual energy leads to a very simple and easy to implement
scheme. However, as we saw in §7.1, not all first-order Stokes systems are
homogeneous elliptic (or, which is the same, H1-coercive). This fact was
first pointed out in [56] and [58]. As a result, the use of L2-norms for the
residual energy does not necessarily lead to a mathematically correct energy
balance. However, thanks to the generality of hypotheses D.1-D.2 one can
satisfy these two conditions almost automatically by any sensible definition
of a least-squares functional. This fact has contributed significantly to the
success of early least-squares methods based on first-order reformulations.
To summarize, with the velocity boundary condition we have the following
non-equivalent functionals:

Velocity-vorticity-pressure functional:

J(ω,u, p) =
1
2

(
‖ν∇× ω +∇p− f‖2

0 + ‖∇ × u− ω‖2
0 + ‖∇ · u‖2

0

)
(7.40)

Velocity-pressure-stress functional:

J(T,u, p) =
1
2

(
‖T−

√
2ν ε(u)‖2

0 +‖∇·u‖2
0+‖

√
2ν∇·T−∇p−f‖2

0

)
(7.41)
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Velocity gradient-velocity-pressure functional I:

J(U,u, p) =
1
2

(
‖ − ν∇ ·U +∇p− f‖2

0 + ‖∇ · u‖2
0 + ‖U− (∇u)t‖2

0

)
(7.42)

We remind the reader that if the boundary condition is changed the non-
equivalence of these functionals may also change. Consider, for example, the
functional (7.40). When the first-order system (7.1)-(7.3) is augmented by
the normal velocity-pressure boundary condition (7.17), the corresponding
boundary value problem is homogeneous elliptic. As a result, the system
(7.1)-(7.3) is fully H1-coercive, and the relevant a priori estimate is given
by (7.15). This means that for the boundary condition (7.17) the func-
tional (7.40) represents the correct energy balance. Therefore, Theorem 4 is
applicable and the error estimate (6.24) specializes to

‖u− uh‖r + ‖ω − ωh‖r + ‖p− ph‖r (7.43)

≤ Chk+1−r
(
‖u‖k+1 + ‖ω‖k+1 + ‖p‖k+1

)
, r = 0, 1 .

This estimate is valid, e.g., if the standard finite element spaces Pk or Qk
are used for all variables.

Let us now suppose that (7.1)-(7.3) is instead augmented by the velocity
boundary condition (7.4). Then, the corresponding boundary value problem
is not homogeneous elliptic. Thus, the system (7.1)-(7.3) is not fully H1-
coercive, and the relevant a priori estimate is now given by (7.16). This fact
by itself does not immediately imply that the method is not optimal; it only
indicates that standard finite element analyses cannot be used to show that
the optimally accurate error estimates given by (7.43) are valid with the
velocity boundary condition. A more careful analysis of this method does
however reveal that it indeed is suboptimal; suboptimal convergence rates
can be observed computationally as well. An example will be presented in
the next section.

Consider next the functional (7.41). From §7.1.2, we know that the
associated boundary value problem is not fully H1-coercive, regardless of the
choice of boundary conditions. Similarly, the first-order system (7.21)-(7.23)
is not fullyH1-coercive and estimate (7.24) implies that the functional (7.42)
is not norm equivalent. Thus, in both cases, the optimality of the resulting
methods cannot be established using standard elliptic arguments. In fact,
in both cases, one can devise counterexamples that will reveal sub-optimal
convergence rates.
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7.3.2 Weighted least-squares methods

In this section we discuss transformation to DLSP based on the use of
weighted L2-norms. Resulting methods fall into the category analyzed in
§6.5.2. According to the terminology in §5 we call such methods quasi norm-
equivalent because their energy balance depends on the mesh parameter h.

We consider the first-order system (7.1)-(7.3) along with the boundary
condition (7.4). In this case, the correct energy balance is given by (7.16)
and the correct CLSP is based on the least-squares functional (7.35). Setting
q = 0 in (7.35) implies that for the velocity boundary condition the correct
least-squares functional is

J(ω,u, p) =
1
2

(
‖ν∇× ω +∇p− f‖2

0 + ‖∇ × u− ω‖2
1 + ‖∇ · u‖2

1

)
(7.44)

instead of (7.40). However, the use of H1-norms in (7.44) calls for discretiza-
tion of second-order terms such as (∇∇·u) and (∇∇×u). Conforming dis-
cretizations of such terms can be handled using subspaces of H2(Ω). In the
finite element setting, this essentially requires the use of finite element spaces
that are continuously differentiable across the element faces. Unfortunately,
in two and three dimensions, such elements are impractical, which offsets
the potential advantages of a least-squares formulation based on (7.44).

We have encountered the same situation in the abstract setting of §6.5.2
and the functional (6.16). Following the approach outlined in this section
we replace (7.44) by the mesh-dependent functional

Jh(ω,u, p) =
1
2

(
‖ν∇×ω+∇p−f‖2

0+h
−2‖∇×u−ω‖2

0+h
−2‖∇·u‖2

0

)
. (7.45)

This functional represent specialization of (6.27) to the velocity-vorticity-
pressure Stokes equations. Therefore, Theorem 5 is applicable, and the
error estimate (6.31) specializes to

‖ω− ωh‖0 + ‖p− ph‖0 + ‖u−uh‖1 ≤ C hk
(
‖ω‖k + ‖p‖k + ‖u‖k+1

)
(7.46)

This error estimate is valid for k ≥ 2 if one uses, e.g., the finite element spaces
Pk or Qk for the velocity and Pk−1 and Qk−1 for the pressure and vorticity.
Note that the error in the approximation is measured in norms corresponding
to (7.16) with q = −1. As a result, for the approximation of the pressure
and the vorticity one can use finite element spaces with interpolation order
of one degree less than that used for the velocity approximation. This also
means that (7.45) is not optimal if equal order interpolation is used for all
dependent variables.
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Let us now give an example which shows that without the weights (7.45)
yields suboptimal convergence rates. Since (7.45) without the weights is
simply the non-equivalent functional (7.40) this will also establish the fact
that non-equivalence can affect convergence rates. Using the exact solution
from Example 3 in Appendix A with n = 1, the functional (7.40), and
discretization by quadratic elements on triangles, we have computationally
obtained the (approximate) convergence rates as given in Table 7.2; one
can conclude that the rates for the velocity boundary condition case are
sub-optimal. In Table 7.2 the columns BC1 contain results for (7.40) with
the velocity boundary condition, while the BC2 columns present the rates
for (7.40) with the normal velocity-pressure boundary condition (7.17). We
draw attention to the fact that all rates in the BC2 columns are optimal.
This is due to the fact that the velocity-vorticity-pressure equations with
(7.17) are homogeneous elliptic system and (7.40) is in actuality a norm-
equivalent functional!

rates L2 error H1 error
variable BC1W BC1 BC2 BC1W BC1 BC2

u 3.64 2.71 3.11 2.15 2.03 2.04
v 3.31 2.37 3.10 2.10 2.06 2.02
ω 3.57 2.20 3.00 2.35 1.64 1.93
p 3.11 2.34 2.98 2.37 1.64 1.97

Table 7.2: Rates of convergence with and without the weights. Velocity-
vorticity-pressure formulation with (7.4) and (7.17).

Another candidate for a similar treatment is the velocity-pressure-stress
system (7.18). Recall that this system is not fully H1-coercive, i.e., the L2

functional (7.41) is not norm equivalent. As a result, one can find smooth
solutions such that the L2 formulation (7.41) for (7.18) yields suboptimal
convergence rates. At the same time, using (7.20) with q = 0 to define a
norm-equivalent least-squares functional will lead to impractical methods.
Following again the ideas of §6.5.2 we are led to the weighted functional for
(7.18):

Jh(T,u, p) =
1
2

(
h−2‖T−

√
2ν ε(u)‖2

0 + h−2‖∇ · u‖2
0 (7.47)

+ ‖
√

2ν∇ ·T−∇p− f‖2
0

)
;

see [58]. Again, this functional specializes (6.27) to the velocity-pressure-
stress first-order system. The resulting finite element method shares many
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common properties with the one for the velocity-vorticity-pressure system,
including optimal error estimates in which the error in the approximations
of T, u, and p is measured in norms corresponding to (7.20) with q = −1,
i.e.,

‖T−Th‖0 + ‖p− ph‖0 + ‖u−uh‖1 ≤ C hk
(
‖T‖k + ‖p‖k + ‖u‖k+1

)
(7.48)

that is valid for k ≥ 2 if one uses, e.g., the finite element spaces Pk or Qk for
the velocity and Pk−1 and Qk−1 for the pressure and stress. As with (7.46),
the estimate (7.48) is not optimal if equal order interpolation is used for all
dependent variables.

One can also show that the weights in (7.47) are necessary for the opti-
mal convergence rates in (7.48). For example, consider the following exact
solution; [58] (compare with Example 3!)

u1 = u2 = sin(πx) sin(πy)
T1 = T2 = T3 = sin(πx) exp(πy)

p = cos(πx) exp(πy) .

and a method based on (7.47) implemented using P1 elements for T and p,
and P2 elements for the velocity. Numerical estimates of convergence rates
with and without the weights are summarized in Table 2.

rates L2 error H1 error
variable WLS LS BA WLS LS BA

u 3.59 1.11 3.00 2.85 1.00 2.00
v 3.13 1.28 3.00 2.77 1.17 2.00

T11 2.42 1.25 2.00 0.99 0.94 1.00
T12 2.48 1.14 2.00 1.01 0.99 1.00
T22 2.34 1.26 2.00 1.05 0.76 1.00
p 2.40 0.94 2.00 1.10 0.92 1.00

Table 7.3: Convergence rates with and without the weights. Velocity-
pressure-stress formulation.

Since without the weights (7.47) gives the non-equivalent functional
(7.41) this table shows once again that non-equivalent discrete least-squares
principles can lead to loss of convergence rate.
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7.3.3 H−1 least-squares methods

In this section we consider another transformation to a DLSP, this time
based on the use of discrete negative norms. This approach was developed
for general first-order ADN systems in §6.5.2. It can be applied whenever
the first-order system fails to be homogeneous elliptic, as in the case of
the velocity-vorticity-pressure Stokes equations with the velocity boundary
condition. The use of negative norms has certain advantages when compared
with the weighted L2 approach of the last section. Most notably, resulting
algebraic equations have condition numbers comparable with the condition
number of the systems resulting from Galerkin discretizations. In contrast,
analysis of §6.5.2 shows that weighted functionals lead to algebraic equations
with condition numbers of order O(h−4). Of course, these advantages come
at a certain price, and in the case of negative norm methods it is in the more
complicated implementation along with the fact that the linear systems are
dense and must necessarily be solved by assembly free methods.

Let us consider again the velocity-vorticity-pressure system (7.1)-(7.3)
with the boundary condition (7.4). The fact that this system is not homo-
geneous elliptic implies that one cannot use the same norm to measure all
residuals of the first-order equations. Recall that setting q = 0 in the a
priori estimate (7.16) leads to the mathematically correct, but impractical5

functional (7.35) which has been used to motivate the weighted functional
(7.45). If, on the other hand, one chooses q = −1 in the a priori estimate
(7.16), this leads to CLSP based on the minimization of

J−1(ω,u, p) =
1
2

(
‖ν∇× ω +∇p− f‖2

−1 + ‖∇ × u− ω‖2
0 + ‖∇ · u‖2

0

)
.

(7.49)
Obviously, this functional represents a specialization of (6.16) to the velocity-
vorticity-pressure Stokes system. A CLS principle which requires minimiza-
tion of this functional is hardly any more practical than a CLS principle
based on (7.16) with q = 0. This is because negative norms are not easy
to compute. Thus, transformation to a DLSP is still required and here we
propose to use the discrete negative norm (6.35), introduced in §6.5.2. This
leads to a DLS principle based on the minimization of

J−h(ω,u, p) =
1
2

(
‖ν∇×ω +∇p− f‖2

−h+‖∇×u−ω‖2
0 +‖∇·u‖2

0

)
. (7.50)

This functional is clearly a specialization of (6.38). Note that with the trivial
5This functional was impractical because of the fact that it involved second order

derivatives.
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choice Bh ≡ 0, (7.50) reduces to the weighted functional (7.45). Least-
squares methods can now be defined according to the recipe of §6.5.2. In
particular, the error estimate from Theorem 6 specializes to

‖ω− ωh‖0 + ‖p− ph‖0 + ‖u−uh‖1 ≤ C hk
(
‖ω‖k + ‖p‖k + ‖u‖k+1

)
(7.51)

In contrast to the error estimate (7.46), the bound (7.51) holds for k ≥ 1.
This means that asymptotic convergence rate of the negative norm method
can be established under less stringent regularity assumptions than those
for the weighted method.

It should be noted that the use of discrete negative norms in (7.50) leads
to algebraic problems with dense matrices. As a result, a practical imple-
mentation of corresponding finite element methods is necessarily restricted
to the use of iterative solvers that do not require matrix assembly. On the
positive side, the algebraic system for (7.50) has O(h−2) condition number
and can be preconditioned in a much more efficient manner using, e.g., a
block preconditioner defined according to (6.44).

7.4 Least-squares methods for the Navier-Stokes
equations

All classes of least-squares methods developed for the Stokes equations, i.e.,
non-equivalent, weighted and negative norm can be easily extended, at least
in principle, to the nonlinear Navier-Stokes equations. Indeed, given a CLS
principle for a first-order Stokes problem, the corresponding CLS principle
for the Navier-Stokes equations is readily available by simply including an
appropriate form of the nonlinear term into the residual of the momentum
equation. From a practical point of view, the resulting methods differ from
their Stokes counterparts in two aspects. First, the associated discrete prob-
lem now constitutes a nonlinear system of algebraic equations that must be
solved in an iterative manner using, e.g., a Newton linearization. Second,
solving the discrete system may not be straightforward for high values of
the Reynolds number since it is well-known that the attraction ball for, e.g.,
Newton’s method, decreases as the Reynolds number increases.

Most existing least-squares methods for the Navier-Stokes equations
are based on the velocity-vorticity-pressure form of this problem, see e.g.
[48, 49, 50], [54, 55, 57]. Exceptions include [51, 52] and [53] which con-
sider velocity gradient methods, and [103] where a stress-based method is
discussed. The differences among various least-squares methods involve the
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choice of the discretization spaces, the treatment of the nonlinear term, and
the method used for solution of the nonlinear discrete equations. For exam-
ple, the methods of [100], [101], and [99] are based on non-equivalent DLS
principles, discretization by piecewise linear finite elements, and the u · ∇u
form of the nonlinear term.

Other authors use instead the ω × u form of the nonlinear term. So-
lution of the nonlinear discrete equations is by Newton linearization and
solution of the linearized equations is by the conjugate gradient method
with Jacobi preconditioning. The method of [104] is very similar; how-
ever, solution of the linearized problem now involves the conjugate gradient
method preconditioned by incomplete Choleski factorization. The p-version
of the finite element method has been used in [102]. The methods of [47]
and [57] use weighted least-squares functionals similar to (7.45), where in
addition to the mesh dependent weights h−2, the residual of the momentum
equation is weighted by the Reynolds number. To handle large values of the
Reynolds number, these methods use Newton linearization combined with
continuation with respect to the Reynolds number. Large scale computa-
tions and parallelization issues have been considered in [106], [107], [108],
[109], [110] and [112]. Numerical comparison between velocity-vorticity-
pressure, velocity-stress-pressure and velocity gradient formulations is given
in [111]. Discussion of relative advantages and disadvantages of different
forms of the nonlinear term can be found in [6].

The nonlinearity also considerably complicates the mathematical anal-
ysis of corresponding least-squares methods. At present, analyses available
are limited to methods based on the velocity-vorticity-pressure (see [48], [47],
and [50]) and velocity gradient (see [52] and [53]) forms of the Navier-Stokes
equations. In both cases, analyses are based on the abstract approximation
theory of Brezzi-Rappaz-Raviart [4] or its modifications. Since discussion of
these results would require substantial amount of theoretical and technical
background, it is beyond the scope of these lectures. Thus, in what follows
we only outline the main idea of the error analysis.

It can be shown that the Euler-Lagrange equation associated with a
least-squares functional for the Navier-Stokes equations can be cast into an
abstract canonical form given by

F (λ,U) ≡ U + T ·G(λ,U) = 0 , (7.52)

where λ = Re, T corresponds to a least-squares solution operator for the
associated Stokes problem, and G is a nonlinear operator. Similarly, the
corresponding discrete nonlinear problem can be identified with an abstract
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equation of the form

F h(λ,Uh) ≡ Uh + T h ·G(λ,Uh) = 0 , (7.53)

where T h is a discrete counterpart of T . The importance of this abstract
form is signified by the fact that discretization in (7.53) is introduced solely
by means of an approximation to the linear operator T in (7.52). As a
result, under some assumptions, one can show that the error in the nonlinear
approximation defined by (7.53) is of the same order as the error in the least-
squares solution of the linear Stokes problem.
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Chapter 8

Least squares for −4u = f

In this chapter we specialize the methods developed in Chapter 6 to the
Poisson equation in 2D

−4φ = f in Ω (8.1)
φ = 0 on Γ. (8.2)

However, we also consider methods that do not fit completely into the ab-
stract framework of Chapter 6. In these methods the energy balance (5.3) is
not derived from the ADN theory which restricts the possible range of spaces
in the a priori estimates to the standard Sobolev spaces W p

q (Ω). Instead,
the relevant a priori bounds are derived in a direct manner which makes
it possible to obtain energy balance for the least-squares method in terms
of spaces such as H(Ω,div ) or H(Ω,div ) ∩ H(Ω, curl ). For more details
about such direct techniques we refer to [65], [71], [72], [73], [74], and [93].
Nevertheless, it should be pointed out that regardless of the method used
to establish (5.3), formulation of a mathematically well-posed least-squares
principle follows essentially the path outlined in Chapter 5.

Let us recall that the Poisson equation (8.1)-(8.2) was considered in
section 2.1 as an example of a problem for which a natural unconstrained
minimization principle exists. Also, in section 2.3 we saw that a standard
Galerkin procedure applied to the second order Poisson problem will neces-
sarily recover this optimization setting. As a result, the Galerkin method for
(8.1)-(8.2) operates in the favorable Rayleigh-Ritz setting and application
of a least-squares principle to the second order problem is not justified.

However, if the goal is to obtain an approximation to ∇φ rather than
to φ we may prefer to compute v = ∇φ directly rather than to differen-
tiate the approximation of φ. Then, application of the standard Galerkin
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procedure will inevitably lead us to the saddle-point weak problem (2.20).
Now, the least-squares approach becomes an attractive alternative to the
mixed method and its application is completely justified. Thus, we begin
this chapter with a brief summary of the available first-order formulations
for (8.1)-(8.2) and their properties.

8.1 First-order systems

A first-order form of (8.1)-(8.2) is given by the div-grad system

∇ · v = f in Ω (8.3)
∇φ+ v = 0 in Ω (8.4)

along with (8.2). In view of (8.4) and (8.2) this system can be augmented
by an additional equation (curl constraint)

∇× v = 0 in Ω (8.5)

and a boundary condition

n× v = 0 on Γ. (8.6)

We shall refer to the augmented system (8.3)-(8.5), (8.2), and (8.6) as the
div-grad-curl system. The system (8.3)-(8.4) is elliptic in the sense of ADN;
see [11]. The appropriate indices (see Example 1 in §6.3) for the equations
and the unknowns are given by s1 = 0, s2 = s3 = −1 and t1 = t2 = 1,
t3 = 2, respectively (it is assumed that the equations are ordered as in (8.3)-
(8.4) and that the unknowns are ordered as (v1,v2, φ)). Thus, the div-grad
system is not uniformly elliptic and the a priori estimates relevant to the
least-squares method are

‖v‖0 + ‖φ‖1 ≤ C
(
‖∇ · v‖−1 + ‖∇φ+ v‖0

)
, (8.7)

for all (v, φ) ∈ L2(Ω)×H1(Ω) and

‖v‖1 + ‖φ‖2 ≤ C
(
‖∇ · v‖0 + ‖∇φ+ v‖1

)
, (8.8)

for all (v, φ) ∈ H1(Ω) × H2(Ω). Formally, the div-grad-curl system is not
ADN elliptic because it has 4 equations and 3 unknowns. By adding the
gradient of a slack1 variable ψ to equation (8.4) and a boundary condition

1We encountered the same situation with several first-order formulations of the Stokes
equations.
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ψ = 0 this system becomes homogeneous elliptic; see [80]. It can be shown
that the slack variable is identically zero and can be completely ignored so
that the relevant a priori estimate is

‖v‖1 + ‖φ‖1 ≤ C
(
‖∇ · v‖0 + ‖∇φ+ v‖0 + ‖∇ × v‖0

)
. (8.9)

for all (v, φ) ∈ H1(Ω)×H1(Ω). In addition to (8.7)-(8.9) one can also show
that

‖v‖div + ‖φ‖1 ≤ C
(
‖∇ · v‖0 + ‖∇φ+ v‖0

)
(8.10)

for all (v, φ) ∈ H(Ω,div ) × H1(Ω). This a priori estimate does not follow
from the ADN theory and must be established directly; see [65] or [71].

8.1.1 Inhomogeneous boundary conditions

To determine the appropriate norms for a given boundary operator one
may rely again on the elliptic regularity theory of [11], or on various trace
theorems relating boundary and interior norms of functions. For example,
a result of [8] states that for every g ∈ H1/2(Γ) there is a unique φ ∈ H1(Ω)
such that 4φ = 0 in Ω, φ = g on Γ, and ‖φ‖1 ≤ C‖g‖1/2,Γ. As a result,
for the div-grad system with inhomogeneous Dirichlet boundary condition
given by

−∇ · v = f and v = ∇φ in Ω and φ = g on Γ ,

the relevant a priori estimate is given by

‖φ‖1 + ‖v‖H(Ω,div ) ≤ C
(
‖v −∇φ‖0 + ‖∇ · v‖0 + ‖φ‖1/2,Γ

)
. (8.11)

8.2 Continuous Least Squares Principles

The norm-equivalent functionals corresponding to (8.7)-(8.10) are given by

J−1(v, φ; f) = ‖∇ · v − f‖2
−1 + ‖∇φ+ v‖2

0, (8.12)

J0(v, φ; f) = ‖∇ · v − f‖2
0 + ‖∇φ+ v‖2

1, (8.13)

JP (v, φ; f) = ‖∇ · v − f‖2
0 + ‖∇φ+ v‖2

0 + ‖∇ × v‖2
0, (8.14)

and
J(v, φ; f) = ‖∇ · v − f‖2

0 + ‖∇φ+ v‖2
0, (8.15)
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respectively. The last two functionals involve only L2 norms of first-order
terms. As a result, the CLS principles associated with (8.14)-(8.15) lead to
practical least-squares methods, i.e., the DLS principle {Xh, Jh(·)} is simply
a restriction of {X, J(·)} to the finite element subspace Xh. The first two
functionals lead to CLS principles that are not practical. Therefore, in these
two cases a DLSP must be used to define the finite element methods. To
find such DLSP we proceed to replace (8.12) and (8.13) by suitable mesh-
dependent functionals. As a substitute for (8.12) we consider the functional

J−h(v, φ; f) = ‖∇ · v − f‖2
−h + ‖∇φ+ v‖2

0. (8.16)

while for (8.13) we consider the weighted functional

Jh(v, φ; f) = ‖∇ · v − f‖2
0 + h−2‖∇φ+ v‖2

0. (8.17)

We could have also considered

Jh(v, φ; f) = h2‖∇ · v − f‖2
0 + ‖∇φ+ v‖2

0,

as a substitute for (8.12), but this functional is merely a scaled version of
(8.17). Clearly, (8.16) specializes the negative norm functional (6.38) to the
first-order Poisson system. Likewise, (8.17) is specialization of the weighted
functional (6.27).

8.2.1 Error estimates

With each one of the functionals (8.14)-(8.17) we associate a DLS principle,
that is a pair {Xh, Jh(·)}, where Xh is a suitable finite element space and
Jh(·) is one of the least-squares functionals. Then, a least-squares method is
defined in the usual manner by computing the minimizer of each functional
over Xh, i.e., by solving the problem

min
Xh

Jh(v, φ; f).

For functionals (8.14)-(8.15) the appropriate space Xh can be defined using
equal order interpolation for all variables

Xh = {(vh, φh) | (vh, φh) ∈
3∏
j=1

Shd , φh = 0 on Γ}.

Resulting finite element methods are conforming in the sense that Xh is
contained both in H1(Ω)×H1(Ω) and H(Ω,div )×H1(Ω), which are exactly
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the appropriate minimization spaces for the energy functionals (8.14) and
(8.15), respectively. For the div-grad-curl system, which is homogeneous
elliptic, the error bound (6.25) from Theorem 4 specializes to

‖φ− φh‖1 + ‖v − vh‖1 ≤ Chd(‖φ‖d+1 + ‖v‖d+1)

provided the exact solution is in [Hd+1(Ω)]3. The error estimate for the
approximations defined by (8.15) is

‖φ− φh‖1 + ‖v − vh‖H(Ω,div ) ≤ Chd(‖φ‖d+1 + ‖v‖d+1)

see [71]). Under additional regularity assumptions on the dual problems one
can also establish error estimates in L2.

Consider now methods based on (8.17) and (8.16). According to Theo-
rems 5 and 6, φ must be approximated by finite elements of one order higher
than those used for v. As a result, the proper choice of the space Xh for
the DLS principle {Xh, Jh(·)} is now given by:

Xh = {(vh, φh) | (vh, φh) ∈ [Shd ]2 × Shd+1, φh = 0 on Γ}.

For example, if v is approximated using piecewise linear elements, then φ
must be approximated by piecewise quadratic elements. Of course, one may
as well use quadratics for all unknowns, but then error bounds (6.31) and
(6.41) will not be optimal with respect to the spaces used. Assuming that
d ≥ 1 and (v, φ) ∈ [Hd+1(Ω)]2 ×Hd+2(Ω), both (6.31) and (6.41) specialize
to

‖φ− φh‖1 + ‖v − vh‖0 ≤ Chd+1(‖v‖d+1 + ‖φ‖d+2).

However, for the negative norm method convergence can be still established
if (v, φ) ∈ [H1(Ω)]2 × H2(Ω), while for the weighted method Theorem 5
requires that (v, φ) is at least in [H2(Ω)]2 ×H3(Ω).

8.2.2 Conditioning and preconditioning of discrete systems

Condition numbers for all matrices, except the one associated with (8.17),
are of order O(h−2). For this matrix the weight h−2 causes an increase of
the condition number order to O(h−4).

Next, consider design of preconditioners for each one of the four systems.
The norm equivalence of (8.15) implies that the associated form Q(·; ·) is
equivalent to an H1(Ω)×H(Ω,div ) inner product. As a result, the matrix
Ah in the algebraic problem can be preconditioned by a block diagonal ma-
trix consisting of a Poisson preconditioner and a discrete divergence block.
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Similarly, the matrix Ah associated with (8.14) is equivalent to a block di-
agonal matrix of discrete Laplace operators. As a result, this system can be
preconditioned by

diag(T h, T h, T h)

where T h is a preconditioner for the Poisson equation. The matrix for
(8.16) is norm equivalent with respect to the norm on L2(Ω) ×H1(Ω) and
as a result, the corresponding algebraic problem can be preconditioned by

diag(h2I, h2I, T h).

Preconditioning of the algebraic system arising from the weighted functional
(8.17) is more difficult due to the lack of norm equivalence. Combined with
the higher condition number of this system this makes its numerical solution
more complicated and time consuming than that of the other three systems.



Chapter 9

Least-squares methods that
stand apart

In this chapter we examine three examples of least-squares methods that
do not fit directly into the framework developed in Chapters 5–6. The first
is represented by collocation least-squares methods. Here we consider ex-
amples of point and subdomain collocation methods. The second includes
a method that combines least-squares ideas with the technique of Lagrange
multipliers in order to enhance mass conservation. The third unconven-
tional least-squares method casts the original boundary value problem into
the framework of an optimal control or optimization problem with a least-
squares functional serving the role of the cost or objective functional.

9.1 Least-squares collocation methods

In this section, we briefly review a class of least-squares methods in which
the discretization step is taken prior to the least-squares step. Such methods
are commonly known as least-squares collocation, point least-squares, point
matching, or overdetermined collocation methods; see [119], [120]. The main
idea is as follows. Consider again the linear boundary value problem (5.1)-
(5.2). We assume that an approximate solution is sought in the form

U(x) ≈ UN (a, x) ,

where a = (a1, a2, . . . , aN ) is a vector of unknown coefficients. Let RjL(a, x),
j = 1, . . . ,K, and RjR(a, x), j = 1, . . . , L denote residuals of the equations in
(5.1) and (5.2), respectively. To define a least-squares collocation method,
one chooses a finite set of points {xi}M1

i=1 in Ω, and another set of points

113
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{xi}Mi=M1+1 on Γ. Then, a least-squares functional is defined by summing
the weighted squares of the residuals evaluated at the points xi:

J(a) =
K∑
j=1

M1∑
i=1

αji

(
RjL(a, xi)

)2
+

L∑
j=1

M∑
i=M1+1

βji

(
RjR(a, xi)

)2
. (9.1)

The weights αji and βji may depend on both the particular equation and
collocation point. Minimization of (9.1) with respect to the parameters in
a leads to (a usually overdetermined) algebraic system of the form Aa = b,
where A is an M by N matrix. Then, a discrete solution is determined
by solving the normal equations ATAa = ATb. Methods formulated along
these lines have been used for the numerical solution of the Navier-Stokes
equations (see [120]) and hyperbolic problems, including the shallow water
equations (see [121], [122], [123], and [124].) For numerous other applications
of collocation least-squares, see [119].

Evidently, when the number of collocation points M equals the number
of degrees of freedom N in UN (a, x), the above methods reduce to a standard
collocation procedure. Similarly, if UN (a, x) is defined using a finite element
space and the collocation points and weights correspond to a quadrature
rule, then collocation is equivalent to a finite element least-squares method
in which integration has been replaced by quadrature. Collocation least-
squares methods offer some specific advantages. For example, since only a
finite set of points xi in the domain Ω need be specified, collocation least-
squares are attractive for problems posed on irregularly shaped domains;
see [123]. On the other hand, since the normal equations tend to become
ill-conditioned, such methods require additional techniques, like scaling, or
orthonormalization, in order to obtain a reliable solution; see [119].

Standard collocation, as well as collocation least-squares methods, use
point-by-point matching criteria to define the discrete problem. Instead of
a set of points one can also consider collocation over a set of subdomains
of Ω. In such a case, the discrete problems are obtained by averaging dif-
ferential equations over each subdomain. Here, for an illustration of this
approach, we consider the subdomain Galerkin least-squares method of [79].
Let (5.1)-(5.2) correspond to a first-order homogeneous elliptic boundary
value problem with C = 0, i.e., Lu = Aux + Buy, Ru = Ru where R is a
full-rank n by 2n matrix. To define the subdomain Galerkin/least-squares
method for (5.1)-(5.2), we consider a finite element space Xh consisting of
continuous piecewise linear functions defined on a regular triangulation Th of
the domain Ω into triangles Ωk. These triangles will also serve as collocation
subdomains. We let K and N denote the number of triangles and vertices,
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respectively, in Th. For simplicity, we shall assume that the finite element
functions in Xh satisfy the essential boundary conditions (5.2). Then, a set
of discrete equations is formed by averaging separately the components of
the differential system (5.1)-(5.2) over each of the triangles Ωk ∈ Th:∫

Ωk

(
Luh

)
j
dΩ =

∫
Ωk

(f)j dΩ for k = 1, . . . ,K and j = 1, . . . , 2n .

(9.2)
Once a basis for Xh is chosen, it is not difficult to see that (9.2) is equivalent
to a rectangular linear algebraic system of the form CU = F which consists
of 2nK equations in approximately 2nN unknowns, i.e., there are about
twice as many equations as unknowns. The subdomain-Galerkin/least-
squares method of [79] consists per se of forming the matrix C and sub-
sequently solving the above linear system by a discrete least-squares tech-
nique. If the data F is sufficiently smooth, one can show (see [79]) that the
resulting method is optimal in the sense that

‖u− uh‖1 ≤ C1h‖F‖1 and ‖u− uh‖0 ≤ C0h
2‖F‖1 .

We note that the discretization step in (9.2) can also be interpreted as an
application of a nonstandard Galerkin method to the system (5.1)-(5.2) in
which the test space consists of piecewise constant test functions with respect
to Th. Similar subdomain collocation least-squares methods have also been
developed for the numerical solution of Maxwell’s equations; see [76].

9.2 Restricted least-squares methods

In general, when a least-squares method is used for the numerical solution
of incompressible flow problems, computed velocity fields do not exactly
satisfy the continuity equation. As a result, least-squares methods con-
serve mass only in an approximate manner and usually one can show that
‖∇ · uh‖0 = O(hr), where r > 0 depends on the particular finite element
space employed. One way to enhance mass conservation involves the use of
local mesh dependent weights along with special weights for the continuity
equation. For example, the weighted functional (7.45) can be modified as
follows (see [87]):

JK(ω, p,u) =
1
2

(
‖ν∇× ω +∇p− f‖2

0 (9.3)

+
J∑
j

h2
j (W‖∇ · u‖2

0,Ωj
+ ‖∇ × u− ω‖2

0,Ωj
)
)
,
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where Ωj , j = 1, . . . , J , denotes the j−th finite element, hj denotes the
diameter of Ωj , and W is a weight for the continuity equation. Computa-
tional results with the corresponding finite element method reported in [87]
indicate very good mass conservation properties with a moderate continuity
equation weight (W = 10). Note that finite element methods based on the
functional (9.3) do fit into the framework of Chapters 5 and 6 in the sense
that these methods can be viewed as beingRbased on DLSP derived from a
CLSP for the correct least-squares functional (7.44).

Another approach, suggested in [85], which does not fit into the frame-
work of Chapters 5–6, combines least-squares and Lagrange multiplier tech-
niques into a method called restricted least-squares. The main idea of this
method is to consider the continuity equation as a constraint that is en-
forced on each finite element via Lagrange multipliers. To state the method
of [85], let Th denote a triangulation of Ω with n finite elements, L denote
a first-order Stokes differential operator, and Xh denote a suitable finite el-
ement space defined over Th. The variational problem associated with the
restricted least-squares method for the Stokes equations is then given by

seek Uh ∈ Xh, and λj ∈ R, j = 1 . . . , J , such that∫
Ω
LUh · LV hdΩ +

J∑
j

(
λj

∫
Ωj

∇ · vhdΩ + µj

∫
Ωj

∇ · uhdΩ
)

=
∫

Ω
LV h · F

∀V h ∈ Xh, µj ∈ R, j = 1 . . . , J . Although computational results ob-
tained with the restricted method are very satisfactory, it also has some
shortcomings. The use of Lagrange multipliers leads to a linear algebraic
system with a symmetric but indefinite matrix that has a structure very
similar to the matrices arising in mixed methods. Likewise, the size of the
discrete problem increases by the number of additional constraints. Thus, at
present it remains unclear whether the advantages of the restricted method
outweigh the problems associated with imposing constraints on the velocity
approximation. In particular, the loss of positive definiteness negates the
main advantage of the least-squares formalism.

9.3 Least-squares optimization methods

The main idea of least-squares/optimization methods is to transform the
original boundary value problem into an optimal control or optimization
problem for which a cost functional is given by a least-squares type func-
tional. To describe the method consider the following nonlinear Dirichlet
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problem:
−4φ−G(φ) = 0 in Ω (9.4)

along with the boundary condition φ = 0 on Γ. Then, an H−1 least-squares
functional for (9.4) is given by

J(φ) = ‖4φ+G(φ)‖2
−1 , (9.5)

where ‖ · ‖−1 denotes the negative norm. Minimization of (9.5) over H1
0 (Ω)

would lead to a least-squares principle that is similar to the principles of
Chapter 6.

The least-squares-optimization approach, however, considers minimiza-
tion of

K(φ, ξ) = ‖4(φ− ξ)‖2
−1 , (9.6)

where ξ ∈ H1
0 (Ω) is a solution of

−4ξ = G(φ) in Ω and ξ = 0 on Γ . (9.7)

In the context of optimal control problems, one can identify φ with the
control vector, ξ with the state variable, (9.7) with the state equation, and
(9.6) with the cost functional. Furthermore, using the identity

‖4φ‖−1 = ‖∇φ‖0 ∀φ ∈ H1
0 (Ω) ,

one can replace (9.6) with the more easily computable (and therefore prac-
tical) cost functional

K(φ, ξ) = ‖∇(φ− ξ)‖2
0 . (9.8)

To summarize, the least-squares/optimization method for (9.4) can be stated
as follows:

minimize K(φ, ξ) given by (9.8) over φ ∈ H1
0 (Ω), subject to the state

equation (9.7).

To solve the above optimization problem one can use an abstract version
of the conjugate gradient method; see [125]. At each iteration, this method
would require solution of two Dirichlet problems (9.7) for the computation
of the descent direction.

This class of methods has been developed for nonlinear flow problems,
including compressible flows (see [125, 126], and [127]) and the Navier-
Stokes equations (see [125] and [128].) For example, to derive the least-
squares/optimization method for the Navier-Stokes equations (2.37), let

Z = {u ∈ H1
0(Ω) | ∇ · u = 0 in Ω}
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and
K(u, ξ) =

ν

2
‖4(ξ − u)‖2

−1 =
ν

2

∫
Ω
|∇(ξ − u)|2dx (9.9)

and consider the Stokes problem

−ν4ξ +∇q = −u · ∇u in Ω
∇ · ξ = 0 in Ω

ξ = 0 on Γ .
(9.10)

Then, the least-squares/optimization method for (2.37) is given by:

minimize K(u, ξ) given by (9.9) over u ∈ Z, subject to the state
equation (9.10).

To solve the above optimal control problem, one can again use an abstract
conjugate gradients process. Now, computation of the descent direction at
each iteration involves the solution of several Stokes problems; see [125] and
[128].



Appendix A

The Complementing
Condition

This appendix demonstrates verification of the celebrated Complementing
Condition (see Definition 4 in Chapter 6) for the velocity-vorticity-pressure
and the velocity-pressure-stress Stokes operators. Here the reader will find
most of the technical details that accompany this task and which were omit-
ted from the main text.

Before we proceed any further, let us point out that the Complementing
Condition can also be described in the following non-algebraic way; see [9].
Let us assume that in a neighborhood of P the boundary Γ is flattened so
that it lies on the plane z = 0. Then on z ≥ 0 we consider a homogeneous,
constant coefficient (frozen at P ) system of partial differential equations
corresponding to the principal part of the original system (5.1) with ho-
mogeneous (also constant coefficient) boundary conditions corresponding to
the principal part of the boundary operator (5.2):

Lp(P )u = 0 in z ≥ 0 (A.1)
Rp(P )u = 0 on z = 0 (A.2)

Let now x = (x, y, 0) and ξ be any real vector in the plane z = 0. The
Complementing Condition requires that all solutions to (A.1) - (A.2) of the
form u = ei x·ξv(z) must be identically zero, i.e. v ≡ 0. Note that the ansatz
u = ei x·ξv(z) reduces the homogeneous problem to a system of ODE’s for
v. In addition to direct verification of Definition 4, this characterization
provides an alternative way for establishing the Complementing Condition.
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A.1 Velocity-Vorticity-Pressure Equations

In this section we continue the discussion started in Example 2, Chapter
6 and proceed to verify the Complementing Condition for the velocity-
vorticity-pressure Stokes equations (7.1)-(7.3) with the velocity boundary
condition (7.4), in two dimensions. The symbol of the operator L in (7.1)-
(7.3) is given by

L(x, ξ) =


ξ2 ξ1 0 0

−ξ1 ξ2 0 0
−1 0 −ξ2 ξ1

0 0 ξ1 ξ2

 (A.3)

and the symbol of the boundary operator R is

R(x, ξ) =
(

0 0 1 0
0 0 0 1

)
. (A.4)

Let us now show that the first-order operator (7.1)-(7.3), augmented with
the velocity boundary condition (7.4) cannot be homogeneous elliptic. To
do this we assign the same weight to all equations and the same weight to
all unknowns. In particular, we can choose s1 = s2 = s3 = s4 = 0 for the
equations and t1 = t2 = t3 = t4 = 1 for the unknowns:

0 ωy px 0 0
0 −ωx py 0 0
0 −ω 0 −u1y u2x

0 0 0 u1x u2y

s/t 1 1 1 1

The symbol of the principal part according to these weights will be

Lp(x, ξ) =


ξ2 ξ1 0 0

−ξ1 ξ2 0 0
0 0 −ξ2 ξ1
0 0 ξ1 ξ2

 . (A.5)

The weights si and tj must be such that Lp is uniformly elliptic. A simple
calculation shows that

detLp(x, ξ) = −(ξ21 + ξ22)
2 = −|ξ|4

and hence the uniform ellipticity condition

A−1|ξ|2m ≤ |detLp(x, ξ)| ≤ A|ξ|2m
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holds for m = 2 with A = 1. Before we proceed with the Complementing
Condition we recall that in the two dimensions we must also check the
Supplementary Condition (see Definition 3, Chapter 6).

Proposition 1 Lp satisfies the Supplementary Condition.

Proof. We must show that for every pair of linearly independent real
vectors ξ, ξ

′
the polynomial detL(x, ξ + τξ

′
) in the complex variable τ has

exactly m roots with positive imaginary part. Consider the equation

detLp(x, ξ + τξ
′
) = −|ξ + τξ

′ |4 =
−(|ξ|2 + 2τ(ξ, ξ

′
) + τ2|ξ′ |2)2 = 0

The roots of the quadratic equation inside are

τ1,2 =
−(ξ, ξ

′
)±

√
(ξ, ξ

′
)− |ξ|2|ξ′ |2

|ξ”|2

We note that
(ξ, ξ

′
)2 < |ξ|2|ξ′ |2

whenever ξ and ξ
′

are linearly independent. Hence there will be exactly
two roots with positive imaginary parts as required by the Supplementary
Condition. 2

We are now prepared to show that the Complementing Condition does
not hold for the velocity boundary condition (7.4) and the principal part
(A.5). This principal part corresponds to the assumption that (7.1)-(7.3)
with the velocity boundary condition is homogeneous elliptic.

Recall that for an invertible matrix A the adjoint A′ is defined by A′ =
detA ·A−1. A tedious calculation shows that the adjoint of Lp(x, ξ + τn) is
given by

L′
(x, ξ + τn) = (A.6)

−|ξ1 + τn|2


(ξ2 + τn2) −(ξ1 + τn1) 0 0
(ξ1 + τn1) (ξ2 + τn2) 0 0

0 0 −(ξ2 + τn2) (ξ1 + τn1)
0 0 (ξ1 + τn1) (ξ2 + τn2)


For simplicity let |ξ| = 1, |n| = 1, then since (ξ,n) = 0

detLp(x, ξ + τn) = −|ξ + τn|4 = −(1 + τ2)2
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Therefore τ+
1 = τ+

2 = i and M+(ξ, τ) = (τ − i )2. The velocity boundary
conditions do not involve differentiation and Rp(x, ξ + τn) is identical to
(A.4):

Rp(x, ξ + τn) =
(

0 0 1 0
0 0 0 1

)
.

A simple calculation shows that Rp(x, ξ+τn) ·L′
(x, ξ+τn) is the following

matrix

(1 + τ2)
(
−(ξ2 + τn2) (ξ1 + τn1) 0 0

(ξ1 + τn1) (ξ2 + τn2) 0 0

)
The Complementing Condition will hold if the rows of this matrix are lin-
early independent modulo M+, i.e., one must verify that

(1 + τ2)(−C1(ξ2 + τn2) + C2(ξ1 + τn1)) = (τ − i )2p1(τ) (A.7)
(1 + τ2)(C1(ξ1 + τn1) + C2(ξ2 + τn2)) = (τ − i )2p2(τ) (A.8)

0 = (τ − i )2p3(τ) (A.9)
0 = (τ − i )2p4(τ) (A.10)

is possible only when C1 = C2 = 0 where pi(τ); i = 1, 4 are some polynomi-
als. By choosing p3(τ) = p4(τ) ≡ 0 (A.9) and (A.10) are trivially satisfied
for all possible C1 and C2 so we may disregard them. A further simplifica-
tion occurs when (τ − i ) is factored from (A.7), (A.8). Then the left hand
sides in (A.7) and (A.8) become a second degree polynomials in τ and we
may set p1(τ) = A1(τ + i ); p2(τ) = A2(τ + i ) and factor it immediately. All
this simplifies (A.7)-(A.10) to

(−C1(ξ2 + τn2) + C2(ξ1 + τn1)) = (τ − i )A1 (A.11)
(C1(ξ1 + τn1) + C2(ξ2 + τn2)) = (τ − i )A2 (A.12)

Without loss of generality we may assume that the coordinate axes are
aligned with the directions of ξ and n so that ξ = (1, 0) and n = (0,−1).
Then (A.11) and (A.12) will hold for C1 = i , C2 = 1 and A1 = i , A2 = −1
and therefore the Complementing Condition is not satisfied.

Let us now show that if we assume different orders of differentiability for
the unknown functions, i.e., that (7.1)-(7.3) is not homogeneous elliptic, then
the Complementing Condition will hold for the velocity boundary condition.
This requires us to choose different weights for the equations and different
weights for the unknowns. In particular, we choose s1 = s2 = −1, s3 = s4 =
0 for the equations and t1 = t2 = 2, t3 = t4 = 1 for the unknowns. Now



123

from
0 ωy px 0 0
0 −ωx py 0 0
−1 −ω 0 −u1y u2x

−1 0 0 u1x u2y

s/t 1 1 2 2

it is easy to see that the symbol of the new principal part is given by

Lp(x, ξ) =


ξ2 ξ1 0 0

−ξ1 ξ2 0 0
−1 0 −ξ2 ξ1

0 0 ξ1 ξ2

 . (A.13)

Again
detLp(x, ξ) = −(ξ21 + ξ22)

2 = −|ξ|4

and the uniform ellipticity and the Supplementary Condition clearly hold.
Let η = ξ + τn, i.e.,

η1 = ξ1 + τn1; η2 = ξ2 + τn2

Then for the adjoint of Lp(x, ξ + τn) we find

L′
(x, ξ + τn) = −


η2|η|2 −η1|η|2 0 0
η1|η|2 η2|η|2 0 0
−η2

2 η1η2 −η2|η|2 η1|η|2
η1η2 η2

1 η1|η|2 η2|η|2

 . (A.14)

Let us choose again |ξ| = 1, |n| = 1, then |η|2 = (1+ τ2) and Rp(x, ξ+ τn) ·
L′
A(x, ξ + τn) will be the following matrix:(

−η2
2 η1η2 −η2(1 + τ2) η1(1 + τ2)

η1η2 −η2
1 η1(1 + τ2) η2(1 + τ2)

)
.

The rows of the latter matrix will be linearly independent modulo M+ =
(τ − i )2 if the identities

−C1(ξ2 + τn2)2 + C2(ξ1 + τn1)(ξ2 + τn2) = (τ − i )2p1(τ) (A.15)
C1(ξ1 + τn1)(ξ2 + τn2)− C2(ξ1 + τn1)2 = (τ − i )2p2(τ) (A.16)
(1 + τ2)(−C1(ξ2 + τn2) + C2(ξ1 + τn1)) = (τ − i )2p3(τ) (A.17)

(1 + τ2)(C1(ξ1 + τn1) + C2(ξ2 + τn2)) = (τ − i )2p4(τ) (A.18)
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can only hold with C1 = C2 = 0 .
We will show that (A.15) and (A.16) cannot be verified unless C1 = C2 =

0. Indeed the left hand sides in (A.15) and (A.16) are second degree polyno-
mials, hence p3(τ) and p4(τ) must be constant polynomials. Again, without
loss of generality we may assume that the coordinate axes are aligned with
the directions of ξ and n so that ξ = (1, 0) and n = (0,−1). With this
assumption (A.15) and (A.16) become

−C1τ
2 − C2τ = A3(τ − i )2 (A.19)

−C1τ − C2 = A4(τ − i )2 (A.20)

The right hand side of (A.20) is a second degree polynomial and an equality
is possible if and only if A4 = C1 = C2 ≡ 0. Hence the Complementing
Condition holds.

Example 3 Let us show that the result concerning validity of the Comple-
menting Condition under equal differentiability assumption is sharp. More
precisely; see [56], consider Ω given by the unit square and let ν = 1, q = 0,
ωn = − cos(nx) exp(ny), pn = sin(nx) exp(ny), and un ≡ 0. Then, (7.15)
would imply that

O(exp(n)) ∼ ‖curlωn + grad pn‖0 + ‖curl un − ωn‖0 + ‖divun‖0

≥ C(‖un‖1 + ‖ωn‖1 + ‖pn‖1) ∼ O(n exp(n))

which is a contradiction. This counterexample can also be extended to three
dimensions; see [48].

Remark 1 Along similar lines one can verify that the boundary operator
(7.17) satisfies the complementing condition with both principal parts.

A.2 Velocity-Pressure-Stress Equations

In this section we present some of the details concerning application of
ADN theory to the velocity-pressure-stress equations (7.18). For the sake
of brevity we shall limit our discussion to the case of two-dimensions. We
assume that the unknowns are ordered as:

U = (T1, T2, T3, p, u1, u2) ,
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where T1 = T11, T2 = T12 and T3 = T22, and that the six differential
equations in (7.18) are ordered as

LU =



T1 −
√

2ν ∂u1
∂x

2T2 −
√

2ν(∂u1
∂y + ∂u2

∂x )
T3 −

√
2ν ∂u2

∂y
∂u1
∂x + ∂u2

∂y√
2ν(∂T1

∂x + ∂T2
∂y )− ∂p

∂x√
2ν(∂T2

∂x + ∂T3
∂y )− ∂p

∂y


. (A.21)

According to these ordering agreements we choose the following indices

t1 = t2 = t3 = t4 = 1, t5 = t6 = 2

s1 = s2 = s3 = s4 = −1, s5 = s6 = 0

for the unknowns and the differential equations, respectively. For this choice
of indices we have that

LP = L ,

where L is defined in (A.21) and that

detLp(x, ξ) = detL(x, ξ) = −ν(ξ21 + ξ22)
2 = −ν|ξ|4 .

As a result, the uniform ellipticity condition

C−1
e |ξ|2m ≤ |detLp(x, ξ)| ≤ Ce|ξ|2m

holds with m = 2 and Ce = ν. In other words, the velocity-pressure-stress
system in two-dimensions is uniformly elliptic of total order four and one
must specify two conditions on the boundary Γ. This total order is the same
as for the Stokes problem (2.17) in the primitive variables and therefore, one
can use the same boundary operator (7.4). The boundary operator (7.4)
does not involve differentiation and the choice of t5 = t6 = 2 implies that
one has to take r1 = r2 = −2. Finally, it is also easy to see that Lp satisfies
the supplementary condition.

Note that the choice of tjs above implies different orders of differentiabil-
ity for the pressure and the stress components and the velocity field. If we
assume equal orders of differentiability, i.e., if we choose t1 = . . . = t6 = 1
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then we must take s1 = . . . = s6 = 0 and the principal part becomes

Lp U =



−
√

2ν ∂u1
∂x

−
√

2ν(∂u1
∂y + ∂u2

∂x )
−
√

2ν ∂u2
∂y

∂u1
∂x + ∂u2

∂y√
2ν(∂T1

∂x + ∂T2
∂y )− ∂p

∂x√
2ν(∂T2

∂x + ∂T3
∂y )− ∂p

∂y


.

This principal part corresponds to a hypothesis that the velocity-pressure-
stress Stokes operator may also be homogeneous elliptic. A simple calcula-
tion however, shows that detLp(x, ξ) = 0 for all ξ, i.e., the problem (7.18)
is not elliptic in the sense of [11] under the assumption of an equal differen-
tiability. The interpretation of this fact is that the velocity-pressure-stress
system is not well posed if one assumes that all unknowns belong to H1(Ω).
As a result,

for this system the possibility that the differential operator may
be homogeneous elliptic is already ruled out by the fact that the
principal part corresponding to such an assumption is not ellip-
tic!

A well-posed system will result if one assumes that Tij , p ∈ H1(Ω) and that
u ∈ H2(Ω)2. This situation is quite different compared with the velocity-
vorticity-pressure form of the Stokes equations considered in the previous
section. For this first-order system there exist two distinct sets of indices
and two distinct elliptic principal parts, one of which corresponds to a ho-
mogeneous elliptic operator!

Next we verify the complementing condition. Let n be the outer unit
normal vector to Γ at some point P and let ξ be a unit tangent vector to Γ
at the same point. Then

detLp(x, ξ + τn) = ν(1 + τ2)2

and M+(ξ, τ) = (τ−i)2. Without loss of generality we may assume that the
coordinate axes are aligned with the directions of ξ and n so that ξ = (1, 0)
and n = (0,−1). Then, (6.2) reduces to

c1τ
2 − c2τ = (τ − i)2p1(τ)

c1(τ3 − τ) + c2(τ2 − τ) = (τ − i)2p2(τ)
c1ν(τ2 + 1)− c2ντ(τ2 + 1) = (τ − i)2p3(τ)

c1τ − c2 = (τ − i)2p4(τ)
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where ci are constants and pi(τ) are polynomials. Note that on the last
line the right-hand side is at least a second degree polynomial, whereas the
left-hand side is at most a first degree polynomial. Hence identity is possible
if and only if c1 = c2 = 0, i.e. the complementing condition holds.
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